View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        Eigenvalues, eigenvectors, and random-matrix theory

        Thumbnail
        View/Open
        main.pdf (1.295Mb)
        Publication date
        2020
        Author
        Boere, S.A.
        Metadata
        Show full item record
        Summary
        We study methods for calculating eigenvector statistics of random matrix ensembles, and apply one of these methods to calculate eigenvector components of Toeplitz ± Hankel matrices. Random matrix theory is a broad field with applications in heavy nuclei scattering, disordered metals and quantum billiards. We study eigenvalue distribution functions of random matrix ensembles, such as the n-point correlation function and level spacings. For critical systems, with eigenvalue statistics between Poisson and Wigner-Dyson, the eigenvectors can have multifractal properties. We explore methods for calculating eigenvector component expectation values. We apply one of these methods, referred to as the eigenvector-eigenvalue identity, to show that the absolute values of eigenvector components of certain Toeplitz and Toeplitz±Hankel matrices are equal in the limit of large system sizes.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/38179
        Collections
        • Theses
        Utrecht university logo