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Abstract

We study methods for calculating eigenvector statistics of random matrix en-
sembles, and apply one of these methods to calculate eigenvector components of
Toeplitz ± Hankel matrices. Random matrix theory is a broad field with applica-
tions in heavy nuclei scattering, disordered metals and quantum billiards. We study
eigenvalue distribution functions of random matrix ensembles, such as the n-point
correlation function and level spacings. For critical systems, with eigenvalue statis-
tics between Poisson and Wigner-Dyson, the eigenvectors can have multifractal
properties. We explore methods for calculating eigenvector component expectation
values. We apply one of these methods, referred to as the eigenvector-eigenvalue
identity, to show that the absolute values of eigenvector components of certain
Toeplitz and Toeplitz±Hankel matrices are equal in the limit of large system sizes.
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4.1 Andréief’s identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Dyson’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Newton’s relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 The distributions and their relations . . . . . . . . . . . . . . . . 57
4.4.2 The Gaussian Unitary case . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 Circular ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 The Gaussian Unitary Ensemble . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Level spacing distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.1 Level number variance . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Multifractality 68
5.1 Generalized dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Inverse participation ratios . . . . . . . . . . . . . . . . . . . . . . 72
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1 Introduction

Random Matrix theory is the study of matrices with random entries and where were first
introduced by Wishart in 1928 [1]. The first application in physics was found in the 1950s
when Wigner used this theory to describe Hamiltonians of heavy nuclei [2], [3], replacing
the complex interactions with a random matrix satisfying appropriate symmetries. For
these complicated systems it is inconceivable to write down all interactions within the
nucleus. It is assumed that these interactions are sufficiently chaotic, such that they are
modeled well by a random Hamiltonian. Then, predictions, in the form of expectation
values and variances, can be made without knowing the precise form of the interactions.

The set of possible matrices and associated probability density function (PDF) is
called the ensemble. We will first look at three important examples, together called the
Gaussian ensembles, and see how they come up in quantum mechanical systems with
certain symmetries.

Using Random Matrix theory machinery one can calculate, among others, the level
density (also called eigenvalue density, spectral density or 1-point correlation function),
and the n-point level correlation function. The latter determines the probability of finding
eigenvalues at n given points, while keeping the other (N − n) undetermined, where N
is the matrix size. In particular, the N -point correlation function is just the eigenvalue
PDF.

For quantum systems, whose classical counterpart is chaotic, it is conjectured that the
level spacings satisfy random matrix statistics [4]. This is the Bohigas-Giannoni-Schmit
(BGS) conjecture. An important example are quantum billiards, where the Hamiltonian
is proportional to the Laplacian with either Dirichlet (wave function vanishes at the
boundary) or Neumann boundary conditions (the derivative of the wave function vanishes
at the boundary). The classical counterpart is a system where a particle moves in this
domain and bounces elastically off the boundary. For the quantum Sinai Billiard, the
classical counterpart is chaotic, which is depicted in Figure 1b: trajectories that deviate
slightly from each other initially drift apart quickly for chaotic systems. For the square
billiard [Figure 1a], on the other hand, the trajectories remain close to each other. This
is an example of an integrable system. Integrable systems with more than one degree of
freedom, are conjectured (Berry-Tabor) to satisfy Poisson energy level statistics, where
the level spacing distribution p(s) = e−s [5]. See Figure 2 for a comparison of these two
types of level spacings.

Random matrix theory is not limited to the study of purely chaotic or purely integrable
systems. It can also be used to describe systems with intermediate statistics where eigen-
value statistics, as expressed by level spacings and the n-point correlation functions, lie
between the Poisson and Wigner-Dyson results. For some of these systems, summed mo-
ments of eigenvector components, called inverse participation ratios, satisfy a particular
scaling relation with respect to the system size. This has the interpretation of eigenvector
multifractality. The phenomenon occurs for example in the Rosenzweig-Porter model, as
well as in the translational invariant, that is, Toeplitz variant of the Rosenzweig-Porter
model [7]. An example of a physical system with wave function multifractality is the
Anderson transition at the critical energy [8].

Toeplitz±Hankel matrices, which can describe Hamiltonians of translational invariant
1 dimensional systems with boundary effects, are closely related to random matrix theory.
They appear in formulas for calculating orthogonal polynomials and in the probability of
having a gap of a certain length in the spectrum [9, Chapter 18]. Furthermore, integral
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(a) (b)

Figure 1: Two examples of billiards, (a) the Square Billiard and (b) the Sinai Billiard. In
both cases we draw the trajectories (the first few bounces) of three particles originating
from the same point with slightly different angles. The quantum analog is conjectured
to have Wigner-Dyson statistics in the chaotic case (b), and Poisson statistics in the
integrable case (a).

representations of Toeplitz and Hankel matrices are related to, for example, Chern-Simons
theory on S3 [10], the Gross-Witten-Wadia model [11], [12] and the Brezin-Gross-Witten
model [11], [13].

The structure of the thesis is as follows. We start by introducing two important
examples of random matrix ensembles, the Gaussian and Circular ensembles. We show the
Dyson’s threefold way, which states that there are three possible classes of Gaussian and
Circular ensembles, Orthogonal, Unitary and Symplectic. The classification of a system
in one of these three classes is done using its behaviour under time reversal. We continue
by introducing the Coulomb gas analogy and the interpretation of Brownian motion of
eigenvalues. In the next part the method of orthogonal polynomials is discussed. We
highlight the relation with Toeplitz and Hankel matrices, and its integral representation.
Then, we discuss inverse participation ratios and the interpretation of multifractality. We
discuss the eigenvalue-eigenvector identity [14], and show how this method can be used to
calculate eigenvector components. Finally, we introduce Toeplitz±Hankel matrices and
calculate determinants of Toeplitz±Hankel matrices via the integral expression using the
Cauchy identity and Schur orthogonality. This method allows us to show that the ratio of
determinants used in the eigenvalue-eigenvector identity does not depend on the classical
group we integrate over. From this we obtain our main result, namely, that the absolute
values of the components of eigenvectors of Toeplitz and Toeplitz±Hankel matrix are
equal in the limit of a large system size. This allows us to conclude, for example, that
the effects of the boundary, described by the Hankel part, for a 1 dimensional hopping
model are irrelevant in the large system size.
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Figure 2: Example of level spacings: (a) Distribution with no correlation (Poisson). (b)
Prime numbers. (c) Slow neutron resonance of Erbium 166Er, a heavy nucleus. (d) Energy
levels of a particle in Sinai’s billiard table (Figure 1). (e) Zeroes of the Riemann zeta
function on the Rez = 1/2 line. (f) Uniform distribution.
The 166Er, Sinai and Zeros ζ(s) distributions resemble each other and are more uniformly
distributed than the Poisson distribution. Figure taken from Bohigas, Giannoni and
Schmit [6].
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2 Random matrix ensembles

In this section, we will introduce two important examples of Random Matrix Ensembles,
the Gaussian and the Circular ensembles. These ensembles have found a number of
applications, from describing the energy statistics of heavy nuclei to the statistics of
quantum chaotic billiards. Matrices in the Gaussian ensembles are Hermitian, and hence
well suited to describe Hamiltonians of time invariant quantum mechanical systems. The
Gaussian matrices will be introduced in Section 2.1, where we show that behaviour under
time reversal symmetry can put additional constraint on the Hamiltonians. Three cases
are distinguished; this is Dyson’s threefold way [15]. Another method of deriving this
threefold way is the subject of Section 2.2. This method relates better to the 10-fold way
of Atland and Zirnbauer [16].

In Section 2.3 we introduce the Circular ensembles. Finally, in Section 2.4, we discuss
the probability density of the Gaussian ensembles and its properties. For example, we
show that it is the unique rotational invariant probability density function with indepen-
dent matrix entries with zero mean and unit variance, up to the constraints due to the
Hermitian property.

2.1 Symmetries and the Gaussian ensembles

Quantum mechanical systems are described by Hamiltonians, which are often Hermitian
matrices. There may be conserved quantum numbers, such as total spin or parity, present.
If one chooses a basis using the eigenvectors of these conserved numbers, the M ×M
Hamiltonian will be in block diagonal form, with say N ×N dimensional matrices on the
diagonal, for which the precise form is unknown, other than possibly which symmetries
it has [9]. The latter are the objects studied with random matrix theory, and will just be
called Hamiltonians from now on.

To obtain the Gaussian ensembles, we first make the assumption that the entries are
independently distributed,

PG(H) =
∏
i≤j

fij(Hij),

where PG(H) is the PDF of H, and fij is the PDF of the individual entries. Secondly,
some rotational invariance is assumed. It will turn out that these rotational symmetries,
together with the condition that the entries are statistically independent, imply that the
components are Gaussian distributed. We follow the reasoning by Mehta [9, Chapter 2]
to give a classification based on whether the Hamiltonian has time-reversal symmetry or
spin-rotation symmetry.

The time-reversal operator T is an antiunitary operator and can hence be expressed
as T = KC, where K is unitary and C is the complex conjugation operation. The time
reversal ψR of a state ψ is then given by ψR = Tψ = Kψ∗. From the requirement

〈ϕ,Aψ〉 = 〈ψR, ARϕR〉 = 〈Tψ,ARTϕ〉 = 〈K†(AR)†KCψ,Cϕ〉 = 〈ϕ,KT (AR)TK∗ψ〉,

it follows that the time-reversal symmetry can be expressed as

KATK−1 = K(KT (AR)TK∗)TK† = KK†ARKK† = AR. (2.1)

Consider a unitary transformation ψ → Uψ, then since

〈ϕ, Tψ〉 = 〈Uϕ, (UTU−1)Uψ〉,
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for all ψ, ϕ, it follows that T transforms as T → UTU †, and hence KC → UKCU † =
UKUTC. Therefore K transforms as

K → UKUT . (2.2)

Reversing time twice should do nothing, i.e. T 2 = α · 1, |α| = 1. This implies for K
that

αKT = T 2KT = KCKCKT = KK∗CCKT = KK∗KT = K(KK†)∗ = K,

so K = α(αKT )T = α2K. This results in T 2 = KK∗ = ±1. This condition corresponds,
respectively, to integer (+1) or half-integer (−1) total angular momentum [9, Chapter
2], which are described, respectively, by the Gaussian Orthogonal Ensemble (GOE) and
Gaussian Symplectic Ensemble(GSE).

2.1.1 Gaussian Orthogonal Ensemble (GOE)

Suppose T 2 = 1. In this case, we have K = UUT , for some unitary U [9, Chapter 2].
Indeed, let K = exp(iA), then A is symmetric, as exp(iA) = K = KT = exp

(
iAT

)
.

Choose U = exp(iA/2), then this satisfies our constraints. Perform a unitary transfor-
mation ψ → Uψ, then K transforms as K → UKUT [Eq. (2.2)], so this fixes K = 1. Our
assumption is that H is invariant under time reversal, so H = HR. Eq. (2.1) with K = 1
then implies that HR = HT , i.e. H is real symmetric, hence we require that the PDF is
invariant under transformations of the orthogonal group.

Definition 2.1.1 (Gaussian Orthogonal Ensemble). The Gaussian orthogonal ensemble
E1G is the set T1G of real symmetric matrices H together with a PDF PG(H) satisfying
two constraints:

a) (Invariance) With the volume element dH =
∏

i≤j dHij, the probability PG(H)dH
is invariant under transformations of the orthogonal group (the automorphisms of
T1G).

PG(H ′)dH ′ = PG(H)dH, H ′ = OTHO = O−1HO, O ∈ O(N).

b) (Independence) The entries are statistically independent,

PG(H) =
∏
i≤j

fij(Hij). (2.3)

An example H of the GOE can be drawn as follows. First construct an N ×N matrix
H̃ with real entries drawn from independent Gaussian distributions, with PDF

PG(H̃) =
N∏

i,j=1

1√
2πσ2

exp

(
−
H̃2
ij

2σ2

)
.

Here, σ is the standard deviation of the Gaussian distribution where the entries are drawn
from.

Now, symmetrize and define H = (H̃+ H̃T )/2. The result is a real symmetric matrix.
Note that the diagonal entries stay the same and the off-diagonal entries are a sum of two
normal distributed variables. The following is a standard result in probability theory.
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Lemma 2.1.2. Let X and Y be two independent random variables drawn from a normal
distribution with mean respectively µX and µY and variance σ2

X resp. σ2
Y . Then the sum

Z = X + Y is normal distributed, with mean µZ = µX + µY and variance σ2
Z = σ2

X + σ2
Y .

Dividing by 2 results in a total variance of 2
(
σ
2

)2
= σ2

2
for the off diagonal entries,

hence the PDF for the upper right N(N − 1)/2 entries of H is given by [17, Chapter 1]

PG(H) =
N∏
i=1

1√
2πσ2

exp

(
−H

2
ii

2σ2

)∏
i<j

1√
πσ2

exp

(
−
H2
ij

σ2

)
. (2.4)

This shows that the fij in Eq. (2.3) will actually depend on i and j.
Note that tr(H2) =

∑
i,j HijHji =

∑
i,j H

2
ij, so we can also write Eq. (2.4) as

PG(H) = exp

(
− 1

2σ2
trH2 + c

)
,

for some normalization constant c.

2.1.2 Gaussian Symplectic Ensemble (GSE)

We again follow Mehta [9, Chapter 2] for this section. Suppose T 2 = −1. This means
that KK∗ = −1, hence KT = −K. All eigenvalues of H are doubly degenerate, this is
Kramer’s degeneracy. To see this let ψ be an eigenvector of H with eigenvalue E. Then
as H is time reversal invariant, Tψ is also an eigenvector with eigenvalue E. We will
show that these two eigenvectors are orthogonal. Indeed,

〈ψ|Tψ〉 = 〈Tψ|T 2ψ〉 = −〈Tψ|ψ〉 = −〈ψ|Tψ〉 = 0.

The doubly degeneracy implies that the Hilbert space is even dimensional. Let us relabel
and denote the size of K with 2N for this case. Then we can replace each 2× 2 block by
a quaternion number, using the relation(

a b
c d

)
=

1

2
(a+ d) · 1− i

2
(a− d)e1 +

1

2
(b− c)e2 −

i

2
(b+ c)e3, (2.5)

where e1 = iσ1, e2 = iσ2 and e3 = iσ3, σ1, σ2 and σ3 are the Pauli matrices. The
matrices e1, e2 and e3 satisfy the quaternion relations e2

1 = e2
2 = e2

3 = e1e2e3 = −1.
Quaternions extend the complex numbers with two additional units, usually denoted by
j and k satisfying i2 = j2 = k2 = ijk = −1. We can therefore identify j = σ2 and k = σ3,
and σ1 as the first quaternion unit.

A general quaternion number can then be written as

q = q(0) + q(1)e1 + q(2)e2 + q(3)e3,

with q(i) complex coefficients. A quaternion q is called ‘real’ if the q(i) are real. Define
the ‘quaternion conjugate’ q by

q := q(0) − q(1)e1 − q(2)e2 − q(3)e3

and ‘complex conjugate’ q∗

q∗ := (q(0))∗ + (q(1))∗e1 + (q(2))∗e2 + (q(3))∗e3.
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Combining both results in the Hermitian conjugate q† := q∗. Note that q is real if q∗ = q.
Now consider a 2N×2N -dimensional matrix A, and write it using quaternions as a N×N
matrix Q with quaternionic elements. Using Eq. (2.5), we can express the transpose QT ,
Hermitian conjugate Q† and time reversal QR [Eq. (2.1) with K = e2 · 1] in terms of the
quaternion and complex conjugate,

(QT )ij = −e2Qjie2,

(Q†)ij = (Qij)
†,

(QR)ij = e2(QT )ije
−1
2 = −e2e2Qjie2e

−1
2 = Qji. (2.6)

If QR = Q, then Q is called self-dual.
Unlike before, we cannot do a transformation so that K = 1, as this does not solve

KK∗ = −1, but we can do such a transformation to get K = Z, where Z is a N × N
matrix with e2 on the diagonal. Once such a unitary transformation is chosen, further
transformations ψ → Bψ can be made with unitary B, provided it satisfies Z = BZBT .
The matrices B form the N -dimensional symplectic group Sp(N) and satisfy BR = B† =
B−1 [9].

The Hermitian matrices H that we are considering are also assumed to have time-
invariance, i.e. are self-dual HR = H. Eq. (2.6) together with the Hermitian property
implies that H is a real symmetric quaternionic matrix.

Definition 2.1.3 (Gaussian Symplectic Ensemble). The Gaussian symplectic ensemble
E4G is the set T4G of self-dual Hermitian matrices together with a PDF PG(H) satisfying
two constraints:

a) (Invariance) Let the volume element be dH =
∏

i≤j dH
(0)
ij

∏3
k=1

∏
i<j dH

(k)
ij . The

probability PG(H)dH is invariant under transformations of the symplectic group
(the automorphisms of T4G).

PG(H ′)dH ′ = PG(H)dH, H ′ = B†HB = B−1HB, B ∈ Sp(N).

b) (Independence) The entries are statistically independent,

PG(H) =
∏
i≤j

f
(0)
ij

(
H

(0)
ij

) 3∏
k=1

∏
i<j

f
(k)
ij

(
H

(k)
ij

)
.

2.1.3 Gaussian Unitary Ensemble (GUE)

In this case the Hamiltonian has no time reversal invariance. This can, for example, be
achieved by applying a strong external magnetic field to the system [9, Chapter 2]. The
only assumption is that the Hamiltonians are Hermitian.

Definition 2.1.4 (Gaussian Unitary Ensemble). The Gaussian unitary ensemble E2G is
the set T2G of Hermitian matrices H together with a PDF PG(H) satisfying two con-
straints:

a) (Invariance) Let the volume element be dH =
∏

i≤j dH
(0)
ij

∏
i<j dH

(1)
ij , with H

(0)
ij and

H
(1)
ij the real and imaginary parts of Hij. The probability PG(H)dH is invariant

under transformations of the unitary group (the automorphisms of T2G).

PG(H ′)dH ′ = PG(H)dH, H ′ = U †HU = U−1HU, U ∈ U(N).
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b) (Independence) The entries are statistically independent,

PG(H) =
∏
i≤j

f
(0)
ij

(
H

(0)
ij

)∏
i<j

f
(1)
ij

(
H

(1)
ij

)
.

2.2 Dyson’s three-fold way

In this section, we will show an alternative method of deriving the threefold way, which
arises from first principles when discussing the symmetries of density matrices. This
method emphasizes which assumptions are made to arrive at the threefold way, and while
producing no new results compared to the previous section, can lead to better insight
in why exactly there are three classes of Gaussian ensembles, and also three classes of
Circular ensembles, but for example four classes of Bogoliubov-de Gennes ensembles [18].
Furthermore, this method can be extended to arrive at the 10-fold classification originally
due to Atland and Zirnbauer [16]. Kitaev [19] used this result to classify the topology of
free fermion Hamiltonians based on the symmetry class and the dimension of the system.
This is the periodic table for topological insulators and superconductors. This result is,
however, beyond the scope of this thesis, but we refer an interested reader to Freed and
Moore [20]. The current section is also based on this paper.

A quantum state is described by a wave vector |ψ〉 in a complex separable Hilbert space
H. Usually, this wave vector is required to be normalized to one, ‖ψ‖2 = 〈ψ|ψ〉 = 1. We
will not require this, but instead consider z|ψ〉 for all z ∈ C∗ to be equivalent quantum
states, belonging to the same equivalence class [|ψ〉] in the projective space PH. The
transition probability p from states [|ψ〉], [|ψ′〉] ∈ PH is given by

p : PH × PH → [0, 1],

([|ψ〉] , [|ψ′〉]) 7→ |〈ψ|ψ′〉|2
‖ψ‖‖ψ′‖ .

(2.7)

Alternatively, there is a 1 − 1 correspondence between elements [|ψ〉] in the projective
Hilbert space and rank 1 projection operators Pψ, also known as density matrices, given
by

Pψ = |ψ〉 1

〈ψ|ψ〉
〈ψ|.

The operator Pψ is a rank 1 projection, or equivalently a pure state, because P2
ψ = Pψ.

The transition probability Eq. (2.7) can now be written as

p : PH × PH → [0, 1],
(Pψ , Pψ′) 7→ trH(PψPψ′).

(2.8)

Every potential symmetry of a quantum system should at least preserve transition
probabilities. This is the minimal requirement for a transformation of the Hilbert space
to be called a symmetry. We will call such potential symmetry a projective quantum
symmetry or quantum automorphism, and it is defined as an invertible map PH → PH
(an automorphism), which preserves p. Denote the set of quantum automorphism with
Autqtm(PH).

A norm preserving linear map u : H → H can be extended to a map f̄u : PH → PH
by defining f̄u([|ψ〉]) = [u|ψ〉]. Equivalently, acting on density matrices, one can define
f̄u as f̄u : Pψ 7→ uPψu†. Both unitary and antiunitary maps H → H preserve norms, and

Eq. (2.7) (or Eq. (2.8))1. A linear map S : H → H is antiunitary if 〈Sψ, Sϕ〉 = 〈ψ, ϕ〉
1Both unitary and antiunitary operators u satisfy u†u = uu† = 1
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for all ψ, ϕ ∈ H. Let Autqtm(H) be the set of unitary and antiunitary operators H → H.
Wigner’s theorem states that these are all the quantum automorphisms.

Theorem 2.2.1 (Wigner). Every quantum automorphism is induced by a unitary or
antiunitary operator u : H → H. The surjective map π : Autqtm(H) � Autqtm(PH) is
given by u 7→ f̄u. Furthermore, the kernel of π are the complex numbers of norm 1, U(1).
Hence, we have the following short exact sequence,

1 U(1) Autqtm(H) Autqtm(PH) 1.π (2.9)

Let us assign a sign to maps S in Autqtm(H) based on whether S is unitary ϕH(S) = 1
or antiunitary ϕH(S) = −1. Then ϕH is a map Autqtm(H) → {±1} = Z2. Similarly,
we can define ϕPH : Autqtm(PH) → Z2. We will denote both these maps with ϕ. For
λ ∈ U(1) and S ∈ Autqtm(H), by the properties of linear and antilinear maps, we have

Sλ =

{
λS if ϕH(S) = 1,

λ̄S if ϕH(S) = −1.
(2.10)

We will give the short exact sequence Eq. (2.9) together with the map ϕ a name.

Definition 2.2.2 (ϕ-twisted U(1) central extension). Let G be a topological group and
ϕ : G → Z2 a continuous homomorphism Then a ϕ-twisted U(1) central extension of G,
denoted by Gτ , is the following commutative diagram

1 U(1) Gτ G 1,

Z2

ϕτ
ϕ

such that for all S ∈ Gτ and λ ∈ U(1),

Sλ =

{
λS if ϕ(S) = 1,

λ̄S if ϕ(S) = −1,

and where ϕτ : Gτ → Z2 is a continuous homomorphism.

For ϕ ≡ 1 this is called U(1) central extension.

Example 2.2.3. Let G = M2 = {1, T}. Choose a certain element T ∈ Gτ in the pre-

image of T of the map π : Gτ → M2. Let z = T 2, then because π(z) = π(T )2 = T
2

= 1,
it must hold that z ∈ U(1), where we see U(1) as a subset of Gτ . We distinguish two
cases:

a) ϕ(T ) = +1: For any g ∈ Gτ , we must have ϕτ (g) = ϕ ◦ π(g) = 1. In particular for
g = T this implies that zT = Tz. This allows us to define the map j : M2 → Gτ ,
1 7→ 1, T 7→

√
zT , which is an homomorphism, because

j(T 2) = j(1) = 1 = zz =
√
zz
√
z =
√
zT
√
zT = j(T )j(T ).

Therefore, the sequence is split, Gτ ' U(1)×M2, and we can always choose T such
that T 2 = 1.
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b) ϕ(T ) = −1: Let z = T 2, then π(z) = π(T )2 = 1, so ϕτ (z) = 1. As ϕτ (T ) = −1, we
have for z ∈ U(1), Tz = zT . Then

T 3 = T 2T = zT,

T 3 = TT 2 = Tz = zT,

so we must have z = z = ±1. Therefore, Gτ is the group

Gτ = M±
2 := {z, zT | Tz = zT, T 2 = ±1, z ∈ U(1)}.

Note that ϕ(z) = 1 and ϕ(T ) = −1.

4

In an actual physical system, these potential symmetries Autqtm(PH) need not all be
actual symmetries. The set of actual symmetries forms a topological group G and we
have a continuous homomorphism

ρ : G→ Autqtm(PH).

By composition, there exists also a map ϕ = ϕH ◦ ρ : G→ Z2, such that ρ(g) is linear if
ϕ(g) = 1 and antilinear if ϕ(g) = −1. With

Gτ = {(S, g) ∈ Autqtm(H)×G : π(S) = ρ(g)}

and projections ρτ : Gτ → Autqtm(H) and π̃ : Gτ → G, we can write down the following
commutative diagram

1 U(1) Gτ G 1

1 U(1) Autqtm(H) Autqtm(PH) 1

π̃

ρτ ρ

π

called the pullback extension. The map ρτ is an example of a (ϕ, τ)-twisted representation
of G.

Definition 2.2.4 ((Gτ , ϕ)-representation). Let G be a topological group and Gτ a ϕ-
twisted central extension (Definition 2.2.2). A (Gτ , ϕ)-representation (V, ρτ ) is a complex
vector space V , together with a homomorphism ρτ : Gτ → End(VR) to the group of
endomorphisms of the underlying real vector space VR of V , such that

ρτ (g) =

{
complex linear if ϕ(g) = +1,

complex antilinear if ϕ(g) = −1.

Our goal now is to classify the (Gτ , ϕ)-representations. Much of the Z2-graded repre-
sentation theory is the same as the regular representation theory. For starters, one can
define intertwiners.

Definition 2.2.5 (Intertwiner). Let (V1, ρ
τ
1) and (V2, ρ

τ
2) be two (Gτ , ϕ)-representations.

An intertwiner O is a complex linear map O : V1 → V2, such that, for all g ∈ Gτ , the
following diagram commutes

(V1, ρ
τ
1) (V2, ρ

τ
2)

(V1, ρ
τ
1) (V2, ρ

τ
2)

ρτ1 (g)

O

ρτ2 (g)

O
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The set of intertwiners is denoted by HomGτ

C (V1, V2). Furthermore, we denote EndG
τ

C (V ) =
HomGτ

C (V, V ).
The (V1, ρ

τ
1) and (V2, ρ

τ
2) are called equivalent if there exists such an O which is also

an isomorphism.

Furthermore, there is a version of Schur’s lemma.

Theorem 2.2.6 (Schur’s lemma).

a) An intertwiner between two irreducible (Gτ , ϕ)-representations is either zero or an
isomorphism.

b) If (V, ρτ ) is an irreducible (Gτ , ϕ)-representation, EndG
τ

C (V ) is a real division alge-
bra.

Proof. For the proof we refer to [20, Theorem C1].

Recall that a division algebra D over a field κ is a nonzero algebra D over κ, such
that for every nonzero a ∈ D there exists an inverse a−1. Fortunately, there are only
three division algebras.

Theorem 2.2.7 (Frobenius). There exists precisely three real associative division alge-
bras, namely R,C and H.

Proof. For the proof we refer to [21, p.26].

Each of these three division algebra corresponds to a class in the Dyson’s threefold
way. Let β be the number of real variables needed to specify an element of the division
algebra D, that is β = 1 for D = R, β = 2 for D = C and β = 4 for D = H. The number
β is called the Dyson index.

If Gτ is compact, every (Gτ , ϕ)-representation can be decomposed into irreducible
representations, for which we can apply Schur’s lemma.

Theorem 2.2.8 (Weyl). Suppose Gτ is compact, then any (Gτ , ϕ)-representation is com-
pletely reducible. Let {(Vλ, ρτλ)} be a complete list of inequivalent irreducible (Gτ , ϕ)-
representations. Then we can decompose V as

V '
⊕
λ

Sλ ⊗ Vλ '
⊕
λ

Vλ ⊗ · · · ⊗ Vλ︸ ︷︷ ︸
sλ times

, (2.11)

where ρτλ(g) is the identity on Sλ. The space Sλ is called the degeneracy space, sλ = dimSλ
the degeneracy.

Proof. For the proof we refer to [22, p.60].

Using respectively the first and second part of Schur’s lemma,

HomGτ

C (Vλ, V
′
λ) = δλ,λ′ EndG

τ

C (Vλ) = δλ,λ′Dλ,

where Dλ is one of R,C or H. Decompose HomC(V, V ) using Eq. (2.11)

HomC(V, V ) ' V ∗ ⊗C V

'
⊕
λ,λ′

(S∗λ ⊗R Sλ′)⊗R (V ∗λ ⊗C Vλ′)

'
⊕
λ,λ′

HomR(Sλ, Sλ′)⊗R HomC(Vλ, Vλ′).
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Now take the Gτ -invariant part to get

EndG
τ

C (V ) =
⊕
λ

EndG
τ

R (Sλ)⊗R Dλ =
⊕
λ

Matsλ(Dλ),

where MatN(D) are N ×N -matrices with entries in the field D.
Suppose now that the quantum system is time translation invariant. Then there is

a one parameter subgroup R → Gτ , which via ρτ gives a one parameter subgroup R →
Autqtm(H). Time translation by 0 is the identity, a unitary symmetry, so by continuity,
the one-parameter subgroup t 7→ U(t) = e−itH/~ consists of unitary transformations. The
self-adjoint operator H is called the Hamiltonian.

Corollary 2.2.9 (Schrödinger equation). The time dependent wave function |ψ(t)〉 is
given by U(t)|ψ〉. Derive with respect to t to get

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉.

Because the system is time translation invariant, any symmetry g ∈ Gτ can either
reverse or preserve the arrow of time. Define τ : Gτ → Z2 by2

τ(g) =

{
+1 if g preserves the arrow of time,

−1 if g reverses the arrow of time.

The time translations commute or anticommute with g ∈ Gτ according to τ(g), so for
all g ∈ Gτ ,

ρτ (g)U(t)ρτ (g−1) = U(τ(g)t).

By deriving at t = 0 we get ρτ (g)iHρτ (g−1) = iτ(g)H Now ρτ (g)i = iϕ(g)ρτ (g), hence

ρ(g)Hρ(g)−1 = χ(g)H, (2.12)

where χ(g) = τ(g)ϕ(g). We say that a Hamiltonian H is compatible with the dynamics if
it satisfies Eq. (2.12).

If for some g ∈ Gτ , χ(g) = −1, then ρτ (g) inverts the spectrum of H. This is not
possible if H is bounded from below but not from above, so in most systems we must
require χ(g) = 1 for all g ∈ Gτ , so that also ϕ = τ . In this case, the following diagram
commutes for all g ∈ Gτ

(H, ρτ ) (H, ρτ )

(H, ρτ ) (H, ρτ )

ρτ (g)

H

ρτ (g)

H

,

that is, H is an intertwiner,

H ∈ EndG
τ

C (H) =
⊕
λ

Matsλ(Dλ).

The Hamiltonian is also self-adjoint, so the space E of Hamiltonians compatible with the
dynamics is given by

E =
⊕
λ

Hermsλ(Dλ), (2.13)

2This τ is not related to the τ superscript of Gτ and ρτ .
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where

HermN(D) =


N ×N symmetric matrix if D = R,
N ×N Hermitian matrix if D = C,
N ×N quaternion Hermitian matrix if D = H.

(2.14)

In other words, the Hamiltonian H can be written in block diagonal form, with each
block either a symmetric, Hermitian or quaternion Hermitian matrix. This is Dyson’s
threefold way.

2.2.1 Real and quaternionic structures

We have shown that there are three symmetry classes. We will now show to which class
(real, complex or quaternionic) a Hamiltonian belongs based on the existence of and
behaviour under time reversal symmetry. This will be the topic of this subsection. First
we need to discuss real and quaternionic structures on complex vector spaces.

Definition 2.2.10 (Real structure on complex vector space). Let V be a complex vector
space, then a real structure is a complex antilinear map K : V → V such that K2 = 1.

We denote with V+ = {v ∈ V | K(v) = v} the set of real vectors and with V− = {v ∈
V | K(v) = −v} the set of imaginary vectors.

The set of all real structures on V is denoted by RStr(V ).

The map K can be thought of as a complex conjugation.

Example 2.2.11. Let V = C with underlying real space VR = R2, then for any ϕ ∈ [0, π),
the map

K : x+ iy 7→ eiϕ(x− iy),

defines a real structure on V . In this case V+ is a line with angle ϕ to the x-axis, hence ϕ ∈
[π, 2π) does not result in any new real structures. We have RStr(C) = U(1)/O(1). 4

The same holds for all n > 0,

RStr(Cn) = U(n)/O(n).

Similar to how a complex vector space is a real vector space with a module for the
complex numbers, that is, a method of multiplying vectors with a complex number, we
can define a quaternionic vector space as follows.

Definition 2.2.12 (Quaternionic vector space). A quaternionic vector space is a real
vector space V together with three linear maps I, J,K : V → V satisfying the quaternion
relations.

Multiplying an element v ∈ V with a quaternion number is then defined as follows

(x0 + ix1 + jx2 + kx3)v := x0v + x1Iv + x2Jv + x3Kv,

where i, j and k are the generators of the quaternion algebra, satisfying the quaternion
relations

i2 = j2 = k2 = ijk = −1.
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Definition 2.2.13 (Quaternionic structure on complex vector space). Let V be a complex
vector space, then a quaternionic structure is a complex antilinear map K : V → V such
that K2 = −1.

This makes VR into a quaternionic vector space by defining I multiplication with
√
−1

and J = KI.
The space of all quaternionic structures on a complex vector space is denoted by

HStr(V ).

The space of quaternionic structures is the symmetric space

HStr(C2n) = U(2n)/USp(2n).

Here USp(2n) = Sp(2n) ∩ U(2n) is the compact symplectic group.
Let us now classify Hamiltonians based on the time reversal symmetries. By con-

sidering a single block of the Hamiltonian if needed, we may assume that the entire
Hamiltonian has the same time reversal behaviour. Suppose first that the Hamiltonian
has time reversal symmetry, and let T be the time reversal operator. Then, T must
satisfy τ(T ) = ϕ(T ) = −1 and the group M2 = {1, T} is a subset of G. Restrict the ho-
momorphism ρ : G→ Autqtm(PH) to a homomorphism ρ|M2 : M2 → Autqtm(PH). From
Example 2.2.3 it follows that there are precisely two ϕ-twisted U(1) central extensions of
M2, namely M τ

2 = M±
2 . This results in the commutative diagram

1 U(1) M±
2 M2 1

1 U(1) Autqtm(H) Autqtm(PH) 1

π̃

ρτ |
M±2

ρ|M2

π

Let K = ρτ |M±2 (T ), where T is a chosen element in the pre-image π̃−1(T ), as in Ex-

ample 2.2.3. Then K is anti-linear (ϕ(K) = −1) and K2 = ρτ (T 2) = ρτ (±1) = ±1.
Therefore, there are two possibilities. For M+

2 , K is a real structure on H, Dλ = R and
since the Hamiltonian H is assumed to be compatible with the dynamics, H commutes
with K, so that H has real entries. For M−

2 on the other hand, K is a quaternionic
structure on H, Dλ = H and H has quaternionic matrix entries.

Finally, if the Hamiltonian has no time reversal symmetry, this results in the simple
commutative diagram

1 U(1) U(1) 1 1

1 U(1) Autqtm(H) Autqtm(PH) 1

ρτ |U(1)

π

No additional structure is placed on H, hence this is the unitary (β = 2, complex) case.

Remark 2.2.14. In the literature, one finds associated to each D = R,C and H, a
symmetric space. This is the space where the time evolution operator U(t) lives, and is
the unitary part of Autqtm(H). In the case of D = C, this is U(N), and for D = R and
D = H the above discussion tells us that the spaces are respectively U(N)/O(N) and
U(2N)/USp(2N). The result is summarized in Table 1.
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T 2 D β Cartan label Symmetric space G∗/K

Unitary C 2 A U(N) SL(N,C)/SU(N)
Orthogonal +1 R 1 AI U(N)/O(N) SL(N,R)/SO(N)
Symplectic −1 H 4 AII U(2N)/USp(2N) SU∗(2N)/USp(2N)

Table 1: A summary of the three symmetry classes of the threefold way. The first column
is the name used in the ensemble names. The second column describes the behaviour
under time-reversal symmetry. If it is empty, there is no time-reversal symmetry. A ±1
indicates that the time reversal operator squares to ±1. The third column is the field of
matrix entries. The fourth column is the Dyson index. Finally, there is the Cartan label
of the symmetric space, the symmetric space of compact type, where the time evolution
operator lives, and the symmetric space of noncompact type.

To summarize, in this section we have looked at the Hamiltonians of time translation
invariant systems. There are three possible behaviours under time reversal. The system
could not be invariant under time reversal at all, it could be invariant because all states
are time reversal invariant, or it could be invariant because states come in pairs (Kramer’s
pairs) which are mapped to each other under time reversal. For the latter two this resulted
in restrictions on the Hamiltonians. We were able to deduce that the Hamiltonians must
belong to the Hermitian matrices, symmetric matrices or quaternion Hermitian matrices,
respectively.

Random matrix theory takes this threefold classification Eq. (2.14), but acknowledges
that one does not know the precise form of the Hamiltonian H ∈ E , where E is given by
Eq. (2.13), and instead places a probability measure on E . It is always assumed that the
Hamiltonian consists of a single block, that is, E = HermN(D). Results of random matrix
theory are probability density functions and expectation values of such ensembles. If one
chooses the measure on E to maximize entropy, or alternatively assumes independent
matrix entries, one obtains the important Gaussian ensembles. This will be the subject
of Section 2.4, but first we consider the circular ensembles.

2.3 The Circular ensembles

Consider an irregular cavity, where plane waves are entering and exiting through a lead
which only permits N distinct wave states. Denote the amplitudes of the N incoming
states with ~I and the outgoing with ~O. Assume there is no absorption or dissipation.
Then, the scattering matrix S is such that

~O = S~I.

All such S are unitary, since flux conservation requires |~I|2 = | ~O|2, hence 〈S~I, S~I〉 =

〈~I, ~I〉. If there is no time-invariance, this is the only constraint. Otherwise, either S is
symmetric, S = ST , for β = 1 or S is self-dual, S = SR for β = 4 (see Beenakker [23] or
Forrester [24]). We will denote the set of symmetric, unitary or self-dual matrices by

SymN(D) =


S ∈ U(N) such that ST = S if D = R,
S ∈ U(N) if D = C,
S ∈ U(N) such that SR = S if D = H.
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Definition 2.3.1 (Circular ensembles). The circular ensembles are the spaces SymN(D)
with uniformly distributed measure dµ(S), where D ∈ {R,C,H}. With uniformly dis-
tributed we mean satisfying dµ(S) = dµ(USV ), for all U, V ∈ U(N) for which S ′ = USV
is again an element of SymN(D). This implies V = UT for D = R and V = UR for
D = H, so we might also say that the measure dµ(S) is invariant under the similarity
transformations

S → USU−1 (β = 1, 4) S → V SU (β = 2). (2.15)

The circular ensembles are called the Circular Orthogonal Ensemble (COE) forD = R,
Circular Unitary Ensemble (CUE) for D = C and Circular Symplectic Ensemble (CSE)
for D = H.

The transformation property Eq. (2.15) of the measure can be used to transform the
space SymN(D) to eigenvalue space, by diagonalizing S ∈ SymN(D). This is the content
of the following two lemmas.

Lemma 2.3.2. Let S be a unitary and symmetric matrix. Then, there exists an or-
thogonal matrix R such that S = R−1ER, where E is a diagonal with complex entries
eiθj .

Proof. Write S = X + iY , with X = (S + S∗)/2 and Y = (S − S∗)/2i real symmetric
matrices. Here, M∗ denotes the complex conjugation of matrix entries (M∗)ij = Mij,

MT is the matrix transpose and M † = (M∗)T for some matrix M . Then

1 = S†S = X2 + Y 2 + i(XY − Y X),

so that X and Y commute. This implies that X and Y can be simultaneously diagonalized
by some real orthogonal matrix R. With E := R(X + iY )RT the result follows.

Lemma 2.3.3. Let S be a unitary and self-dual (S = SR) quaternion matrix. Then,
there exists a symplectic matrix B such that S = B−1EB, where E is a diagonal with
complex entries eiθj .

Proof. The proof is the same as for Lemma 2.3.2, with the transpose replaced by the
dual.

In the following proposition we calculate the Jacobian of the transformation from
SymN(D) to eigenvalue space.

Proposition 2.3.4. The probability density function PC(θ1, . . . , θN) of obtaining the
eigenvalues eiθj , 1 ≤ j ≤ N , for the Circular ensembles, β = 1, 2, 4 is given by

PC(θ1, . . . , θN) = CNβ
∏

1≤i<j≤N

|eiθj − eiθi |β, (2.16)

where CNβ is a normalization constant.

Proof. In this proof we follow Mehta [9, Lemma 10.4.4]. We only consider the β = 1 case.
The cases β = 2 and β = 4 are similar.
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Circular Orthogonal Ensemble Let β = 1, then S = R−1ER.
Since d(eiθ) = eiθidθ, dE = iEdθ. Also, because of RRT = 1, −R(dR)T = (dR)RT =:

dA, which is real anti-symmetric. Furthermore, differentiating S = R−1ER results in

RdSR−1 = −dAE + iEdθ + EdA. (2.17)

Let F be a diagonal matrix with eiθj/2 on the diagonal, then F 2 = E. With U := FR,
S is written as S = UTU and dM defined by dS = iUTdM U is Hermitian. We need to
calculate dM , as dµ(S) = 1

C
(dM). Eq. (2.17) becomes

iFdMF = −dAF 2 + iF 2dθ + F 2dA,

dM = dθ + i(F−1dAF − FdAF−1).

The il component of F−1dAF is given by

(F−1dAF )il =
∑
j,k

F−1
ij dAjkF

klδijδkl = F−1
ii dAilF

ll = ei(θl−θi)/2dAil.

Therefore, the components of dM are

dMii = dθi,

dMij = 2 sin

(
θi − θj

2

)
dAij. (2.18)

This results in the measure

dµ(S) =
∏
j

dθj
∏
i<j

∣∣∣∣2 sin

(
θi − θj

2

)∣∣∣∣ dAij =
∏
j

dθj
∏
i<j

|eiθj − eiθi |dAij.

Integrate over dAij to get the PDF for Circular Orthogonal Ensemble.

2.3.1 Weyl integration

For the case β = 2, SymN(C) = U(N) is a Lie Group, and the invariant measure is the
Haar measure of the unitary group. This allows us to make use of Weyl Integration.
The Weyl integral formula reduces an integral over a Lie group G with integrand a class
function, to an integral over the maximal torus T .

Theorem 2.3.5 (Weyl Integral Formula). Let G be a compact connected Lie Group with
maximal torus T . Let f : G→ C be a continuous function, then∫

G

f(g)dg =
1

|W |

∫
T

J(t)|g/t
∫
G/T

f(gtg−1) d(gT ) dt,

where |W | is the order of the Weyl group and J(t) = det
(
Ad(t−1)|g/t − I

)
. Here g is the

Lie algebra of G, t is the Lie algebra of T and Ad is the adjoint action of G. Furthermore,
J(t) = |∆(t)|2, where ∆(t) is the Weyl denominator

∆(eH) =
∏
α∈R+

(
eα(H)/2 − e−α(H)/2

)
,

with R+ the set of positive roots.
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Group Haar measure on maximal torus

U(r)
1

(2π)rr!

∫ 2π

0

∏
1≤j<k≤r

|eiθj − eiθk |2dθ1 . . . dθr

SU(r + 1)
1

(2π)r(r + 1)!

∫ 2π

0

∏
1≤j<k≤r+1

|eiθj − eiθk |2dθ1 . . . dθr, θr+1 = −
∑r

j=1 θj

SO(2r + 1)
2r

2

(2π)rr!

∫ 2π

0

∏
1≤j<k≤r

(cos θj − cos θk)
2

r∏
n=1

sin2

(
1

2
θn

)
dθn

USp(2r)
2r

2

(2π)rr!

∫ 2π

0

∏
1≤j<k≤r

(cos θj − cos θk)
2

r∏
n=1

sin2 θndθn

SO(2r)
2(r−1)2

(2π)rr!

∫ 2π

0

∏
1≤j<k≤r

(cos θj − cos θk)
2dθ1 . . . dθr

Table 2: Haar measure on the maximal torus after Weyl integration for the classical
groups. Table 38 in Hanany and Kalveks [26].

Proof. For the proof we refer to [25, Theorem 11.30 and Proposition 12.24]

For the Circular unitary ensemble, the density f = 1 is trivially invariant under
conjugation (f(gtg−1) = f(t)), that is, f is a class function.

Corollary 2.3.6. Let G, T,∆, |W | and f be as in Theorem 2.3.5. Suppose that f is also
a class function, then ∫

G

f(g)dg =
1

|W |

∫
T

|∆(t)|2f(t)dt.

For later use we have summarized the results for the classical groups in Table 2.
It is useful to change variables xj = eiθj , which replaces

∫ 2π

0
dθj by a contour integral

−
∮
i/xjdxj. This replacement is summarized in Table 3. The resulting integral can be

calculated by taking residues.
For the unitary groups U(N), ∆(t) is the Vandermonde determinant, as we shall see

now.

Second proof of Proposition 2.3.4 for β = 2. The maximal commutative subalgebra t of
su(n+ 1) is the set of diagonal matrices in su(n+ 1),

t =


iθ1

. . .

iθn+1


∣∣∣∣∣∣∣ θi ∈ R,

∑
i

θi = 0

 .

Let Eij be the matrix with a 1 on the i-th row and j-th column, and let H be diagonal,
H = diag(λ1, . . . , λn+1) ∈ tC, then

[H,Eij] = (λi − λj)Eij.

This shows that the roots are the linear functionals αij, i 6= j, which assign to each H ∈ tC
the quantity λi−λj. We can choose the ones where j > i to form a positive set of roots R+.
Apply Corollary 2.3.6 with f(t) = 1 to get the result for the Circular Unitary Ensemble,
and with f(diag(λ1, . . . , λn+1)) = exp

(
1
2

∑
i λ

2
i

)
for the Gaussian Unitary Ensemble.
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Group Haar measure on maximal torus

U(r)
1

(2πi)rr!

∮ ∏
1≤j<k≤r

|xj − xk|2
r∏

n=1

dxn
xn

SU(r + 1)
1

(2πi)r(r + 1)!

∮ ∏
1≤j<k≤r+1

|xj − xk|2
r∏

n=1

dxn
xn

xr+1 =
∏r

j=1 x
−1
j

SO(2r + 1)
1

2r(2πi)rr!

∮ ∏
1≤j<k≤r

(xj − xk)2(1− xjxk)2

x2
jx

2
k

r∏
n=1

(1− xn)(xn − 1)

xn

dxn
xn

USp(2r)
1

2r(2πi)rr!

∮ ∏
1≤j<k≤r

(xj − xk)2(1− xjxk)2

x2
jx

2
k

r∏
n=1

(1− x2
n)(x2

n − 1)

x2
n

dxn
xn

SO(2r)
1

2r−1(2πi)rr!

∮ ∏
1≤j<k≤r

(xj − xk)2(1− xjxk)2

x2
jx

2
k

r∏
n=1

dxn
xn

Table 3: Haar measure on the maximal torus after Weyl integration for the classical
groups written as contour integrals. Table 39 in Hanany and Kalveks [26]. The contour
integrals are over the region where |xi| = 1. Note that this implies that x∗i = x−1

i .

2.3.2 Associated symmetric spaces

The method of Section 2.3.1 only works for the unitary case, because only in this case the
integration manifold is a Lie Group. The orthogonal and symplectic integration manifold
are a slight generalization to this, and are examples of symmetric spaces, and are of the
form G/K where G is a Lie group and K is a maximal compact subalgebra. We will
discuss symmetric spaces in greater detail in Section 3.1. In this section, we identify the
integration manifold of the three circular ensembles (see [18, Section 8.3.1]).

COE Any unitary symmetric matrix S can be written as S = UTU , that is, we have a
surjective map π : U(N) → SymN(R), U 7→ UTU , with kernel ker π = π−1({1}) = {R ∈
U(N) | RTR = 1} = O(N). We conclude that SymN(R) ' U(N)/O(N).

CUE By definition SymN(C) = U(N).

CSE Any self-dual unitary quaternion matrix S an be written as S = URU , with U a
2N × 2N unitary matrix, that is, we have a surjective map π : U(2N)→ SymN(H), U 7→
URU , with kernel ker π = {B ∈ U(2N) | BRB = 1} = USp(2N). We conclude that
SymN(H) ' U(2N)/USp(2N).

We can now write the partition function as

Z =

∫
G/K

dµ(S),

for appropriate G and K.
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2.4 The Gaussian ensembles

Random matrix theory is about replacing an unknown Hamiltonian by an ensemble of
Hamiltonians with a certain probability measure. In Section 2.2, we showed that it is
natural to consider the set HermN(D), with D ∈ {R,C,H}. In this section we provide
reasons for choosing the Gaussian probability measure on HermN(D). With the new
notation we can define the Gaussian ensembles as follows.

Definition 2.4.1 (Gaussian ensembles). The Gaussian ensembles is set of real symmetric
(D = R, β = 1), Hermitian (D = C, β = 2) or self-dual Hermitian (D = H, β = 4) N ×N
matrices HermN(D) together with probability density function PG(H) = exp

(
−β

2
trH2

)
.

The ensembles are named Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary
Ensemble (GUE) and Gaussian Symplectic Ensemble (GSE), respectively.

The parameter β is the Dyson index.

There are a number of reasons to choose this particular probability density function.
For one, it is the unique probability density function on HermN(D) such that the measure
is invariant under automorphisms of HermN(D) and such that the matrix entries are
independently distributed. Let us first elaborate on that.

Invariance The probability density function PG(H) and measure dH are both sepa-
rately invariant under conjugation by elements U ,

H → UHU−1,

where U is an element of the orthogonal group O(N) for D = R, the unitary group U(N)
for D = C or the symplectic group Sp(N) for D = H. This follows directly from the
properties of the trace. Furthermore, the combination PG(H)dH is invariant under the
transformation

H → UHU−1 +H ′

where H ′ ∈ HermN(D). This is because the factor H ′ will be absorbed in the normaliza-
tion.

The measure dH can be written as

dH =


∏

i≤j dHij for D = R,∏
i≤j dH

(0)
ij

∏
i<j dH

(1)
ij for D = C,∏

i≤j dH
(0)
ij

∏3
k=1

∏
i<j dH

(k)
ij for D = H,

(2.19)

where H
(0)
ij is the real component of Hij, and H

(k)
ij for k ≥ 1 are the imaginary or

quaternion imaginary parts of Hij. These are all the independent components due to
constraints by the Hermitian property.

Independence The entries H
(k)
ij are statistically independent, that is, there exists func-

tions f
(0)
ij for 1 ≤ i ≤ j ≤ N and functions f

(k)
ij for 1 ≤ i < j ≤ N and 1 ≤ k < β such

that

PG(H) =
∏
i≤j

f
(0)
ij

(
H

(0)
ij

) β−1∏
k=1

∏
i<j

f
(k)
ij

(
H

(1)
ij

)
. (2.20)

In fact, as mentioned earlier, these two properties do not leave much freedom to choose
PG(H). This is a theorem by Porter and Rosenzweig [27].
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Theorem 2.4.2. Suppose for all i ≤ j and for all α, f
(α)
ij (H

(α)
ij ) is a smooth, strictly

positive function. Suppose also that N ≥ 2. Then, the PDF PG(H) in the definitions of
the Gaussian ensembles is of the form

PG(H) = exp
(
−a trH2 + b trH + c

)
, (2.21)

for some a, b, c ∈ R and a ≥ 0.

Proof. By diagonalizing H, PG(H) can be written as a function of the eigenvalues λk,
k = 1, . . . , N . The function is symmetric in the eigenvalues, because of the remaining
freedom of ordering the eigenvalues. Any symmetric function can be written in terms of
the first N elementary symmetric functions pj,

pj =
N∑
k=1

λjk = trHj.

We get a result of Weyl [28];

Claim 1. Any conjugation invariant function f(H) can be expressed in terms of the first
N powers of the traces of H.

Therefore, there exists some smooth function ϕ in N variables such that

PG(H) = exp
(
ϕ(tr(H), tr

(
H2
)
, . . . , tr

(
HN
)
)
)
.

Furthermore, there exists smooth g
(α)
kj such that f

(α)
kj (H

(α)
kj ) = exp

(
g

(α)
kj (H

(α)
kj )
)

. The

independence then implies

PG(H) = exp

(∑
α,k≤j

g
(α)
kj (H

(α)
kj )

)
.

Therefore, we look for solutions of

ϕ(tr(H), . . . , tr
(
HN
)
) =

∑
α,k≤j

g
(α)
kj (H

(α)
kj ), (2.22)

which hold for all H.
As H is orthogonal, unitary or symmetric,

tr
(
H2
)

=
∑
i,j

HijHji =
∑
i,j

|Hij|2,

so both tr(H2) and tr(H) are sums over terms containing the same variable Hij. This is
not the case for traces of higher powers of H, as is already clear for the third power;

tr
(
H3
)

=
∑
i,j,k

HijHjkHki.

Therefore, tr(H3) cannot be present in ϕ.
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Claim 2. ϕ does not depend on tr(H3). Write ∂iϕ for ∂ϕ
(
tr(H), . . . , tr

(
HN
))
/∂ tr(H i).

Derive Eq. (2.22) with respect toHij, thenHjk and finallyHki. If the variablesHij, Hjk, Hki

are all distinct variables, after taking the derivative, the right-hand side will be zero.
Therefore,

0 =
∂3ϕ

(
tr(H), . . . , tr

(
HN
))

∂Hij∂Hjk∂Hki

∣∣∣∣∣
H=0

= ∂3ϕ
∂3 tr(H3)

∂Hij∂Hjk∂Hki

, (2.23)

where ∂kϕ := ∂ϕ/∂ tr
(
Hk
)
. The fact that this is the only term remaining can be seen as

follows. There can only be terms proportional to ∂3ϕ, ∂1ϕ∂2ϕ and ∂3
1ϕ. Other derivatives

are still proportional to at least one Hmn, which will be set to zero. Note that i, j, k must
be all distinct for Hij, Hjk and Hki to be distinct variables. In particular, all variables Hij

are off diagonal, so that there are no terms proportional to ∂1ϕ. Hence, indeed Eq. (2.23)
holds.

There exists choices of i, j, k such that ∂3 tr(H3)/∂HijHjkHki is nonzero. Therefore,
from Eq. (2.23) we can now conclude that ∂3ϕ|H = 0 for all H, so ϕ does not depend on
tr(H3).

Similarly, one shows that ϕ does not depend on tr
(
Hk
)

for all k = 3, . . . , N . The same
reasoning can also be applied to show that ∂k1∂

l
2ϕ = 0 for k + l ≥ 2, k, l ∈ Z≥0. Upon

Taylor expansion, ϕ can hence be written as ϕ (tr(H), tr(H2)) = a tr(H2) + b tr(H) + c,
where b = ∂1ϕ, a = ∂2ϕ and c = ϕ(0, 0).

The condition on a is to ensure that PG(H) can be normalized to 1. PDF’s are real
valued functions, so a, b and c must be real.

An alternative proof can be found in Mehta [9, Theorem 2.6.3] or Porter and Rosen-
zweig [27].

Out of these options, the Gaussian PDF PG(H) is the one with zero mean and unit

variance. Therefore, the functions f
(k)
ij (z) in Eq. (2.20) are as follows

f
(k)
ij (z) =

{
1√
2π

exp
(
−1

2
z2
)

if i = j,
1√
π

exp(−z2) otherwise,

and reflect the fact that diagonal elements occur once, and non-diagonal elements occur
twice. Here 1 ≤ i ≤ j ≤ N and 0 ≤ k ≤ β.

The probability density function PG(H) is also the unique PDF that maximizes en-
tropy, or alternatively, minimizes information, subject to the constraint of zero mean and
unit variance [29]. We will outline this reasoning in the remaining of this section. With
the amount of information associated to a probability density P (H) we mean

I[P (H)] :=

∫
dHP (H) logP (H). (2.24)

Note that this does depend on the measure dH, which can be constructed as follows.
Let xµ be independent variables for H. For example, for the Hermitian matrices, x =
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(H
(0)
11 , . . . , H

(0)
NN , H

(0)
12 , . . . ), and the other matrix entries are fixed by the Hermitian prop-

erty. Let gµν be such that

ds2 = tr δHδH† = gµνδxµδxν .

Then dH is the induced measure by this metric gµν ,

dH = (det gµν)
1
2

∏
µ

dxµ.

For the Hermitian matrices we have

ds2 =
∑
i

(δH
(0)
ii )

2
+ 2

∑
i<j

β∑
k=0

(δH
(k)
ij )

2
,

so that we obtain Eq. (2.19)

dH =
N∏
i=1

dH
(0)
ii

∏
i<j

β−1∏
k=0

dH
(k)
ij .

The goal is now to find the probability distribution P (H) satisfying the given constraints,
and minimizing the amount of information I[P (H)]. The constraints are expectation
values of some property fi,

〈fi〉 =

∫
fi(H)P (H)dH. (2.25)

Minimizing I[P (H)] subject to these constraints results in the equation∫
δP (H)

(
logP (H)−

∑
i

λifi(H)

)
dH = 0,

so that

P (H) = exp

(∑
i

λifi(H)

)
. (2.26)

Here the Lagrange multipliers λi can be found by filling Eq. (2.26) into Eq. (2.25).

Example 2.4.3 (Circular ensembles). The PDF should be normalized, so the only con-
straint is 〈f〉 = 1, with f(H) = 1. This results in P (H) = 1. 4

Example 2.4.4 (Gaussian ensembles). The PDF should have total norm 1, zero mean
and unit variance,

〈1〉 = 1,

〈trH〉 = 0,

〈trH2〉 = 1.

This results in the PDF PG(H) = exp(λ1 + λ2 trH + λ3 trH2), where λ1 = λ2 = 0 and
λ3 = β/2. 4
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2.4.1 Eigenvalue distribution

In this section, the Jacobian of the transformation from HermN(D) to eigenvalue space is
explicitly calculated. This is a diagonalization process, which is just a change of variables,
so we can calculate the eigenvalue distribution by calculating the right Jacobian. This
results in the following important theorem.

Theorem 2.4.5. The eigenvalues of an N×N Gaussian matrix are distributed according
to the PDF

PG(x1, . . . , xN) =
1

ZN,β
exp

(
−1

2
β

N∑
ν=1

x2
ν

)∏
α<γ

|xγ − xα|β, (2.27)

with

ZN,β = (2π)N/2β−N/2−βN(N−1)/4

N∏
j=1

Γ(1 + jβ/2)

Γ(1 + β/2)
.

Here β is the Dyson index, which corresponds to how many real values are needed to
specify an entry of the matrix. For GOE β = 1. For GUE there is a real and imaginary
part, so β = 2. A quaternion number can be written using 4 real numbers, hence β = 4
for the Gaussian Symplectic Ensemble.

Ignoring the product term, this distribution is again Gaussian. The product term,
however, has a repulsive effect; the probability of finding eigenvalues close to one another
goes to zero. This causes the eigenvalues to be distributed approximately uniformly. We
will perform a more detailed study in Section 4.6. Therefore, the spectral density is not
Gaussian, but semicircular in the large N limit. This is called Wigner’s semicircle law
and will be discussed later in Section 3.2.2. Let us first give a proof of Eq. (2.27).

Partial proof of Theorem 2.4.5. This proof follows Mehta [9, Chapter 3.1].
The calculation of ZN,β is postponed until Section 4.2, where we will calculate ZN,β

for β = 2 in Eq. (4.25). For the calculation of ZN,β in the case β = 1 and β = 4, we will
refer to Mehta [9, Chapter 3.1].

We will prove Eq. (2.27) for the three cases β = 1, 2, 4.

Case β = 1 (GOE). Do a change of variables and express Hij in terms of N eigenvalues
λν and [N(N − 1)/2]−N other variables pµ, which are used to specify the orthogonal U
in the diagonalization

H = UΛUT . (2.28)

Here, Λ is the matrix with the eigenvalues λν on the diagonal. As U does not depend on
λν and Λ does not depend on pµ, the following derivatives hold,

UT ∂H

∂λν
U = UTU

∂Λ

∂λν
UTU =

∂Λ

∂λν
,

UT ∂H

∂pµ
U = UT ∂U

∂pµ
Λ + Λ

∂UT

∂pµ
U. (2.29)

Furthermore, differentiate 1 = UTU with respect to pµ,

∂UT

∂pµ
U + UT ∂U

∂pµ
= 0,
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so that with S(µ) := UT ∂U
∂pµ

, the second relation in Eq. (2.29) becomes

UT ∂H

∂pµ
U = S(µ)Λ− ΛS(µ).

In coordinates, Eq. (2.29) is∑
j,k

∂Hjk

∂λν
UjαUkγ =

∂Λαγ

∂λν
= δαγδαν , (2.30a)

∑
j,k

∂Hjk

∂pµ
UjαUkγ = S(µ)

αγ (λγ − λα). (2.30b)

Apart from the double sum, which can be solved by picking some arbitrary ordering, this
system of equations can be written in matrix form. The summation is done as follows:
First sum over the diagonal elements, then sum over the non-diagonal elements in the
upper right triangle, which we need to count twice. For example, for fixed α, γ and ν,
Eq. (2.30a) can be written as

(
∂H11

∂λν
· · · ∂HNN

∂λν
∂H12

∂λν
· · · ∂H1N

∂λν
∂H23

∂λν
· · · ∂H(N−1)N

∂λν

)


U1αU1γ
...

UNαUNγ
2U1αU2γ

...
2U(N−1)αUNγ


= δαγδαν

If all values of ν, α and γ and Eq. (2.30b) are also included, the entire system of equations
Eq. (2.30) can then be written compactly as(

∂Hjj
∂λν

∂Hjk
∂λν

∂Hjj
∂pµ

∂Hjk
∂pµ

)(
UjαUjγ

2UjαUkγ

)
=

(
δαγδαν

S
(µ)
αγ (λγ − λα)

)
, (2.31)

where each of the entries are entire matrices themselves. The left most matrix actually is
the Jacobi matrix, of size [N +N(N − 1)/2]× [N +N(N − 1)/2], which can be expressed
in terms of determinants and absolute values:

J(λ, p)

∣∣∣∣ UjαUjγ2UjαUkγ

∣∣∣∣ =
∏
α<γ

|λγ − λα|
∣∣∣∣δαγδανS(µ)

∣∣∣∣ .
In the last step, we could take (λγ − λα) outside the determinant. Indeed, for γ 6= α, δαγ
is zero, so (λγ − λα) is a common factor of this entire column, and it is a property of the
determinant that we can take this factor out. The remaining determinants only depend
on pµ, hence

J(λ, p) =
∏
α<γ

|λγ − λα|f(p), (2.32)

for some f . Finally, integrate over pµ and rewrite the traces of Eq. (2.21) in terms of
sums over eigenvalues λν . This leads to

PG(λ1, . . . , λN) = exp

(
−

N∑
ν=1

(aλ2
ν − bλν − c)

)∏
α<γ

|λγ − λα|.
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Here, a, b are still arbitrary constants and c is fixed by the normalization condition. We
may perform yet another change of variables xν = θν + b/2a, and then scale xν such that
for N = 1 we get a Gaussian distribution with standard deviation 1. This proves the
theorem for β = 1.

Case β = 2 (GUE). The case for β = 2 is analogous, but the real and imaginary parts
need to be separated, so instead of Eq. (2.30), we have the following system of equations

∑
j,k

∂H
(0)
jk

∂λν
U∗jαUkγ = δαγσ

(0)
αν ,

∑
j,k

∂H
(1)
jk

∂λν
U∗jαUkγ = δαγσ

(1)
αν ,

∑
j,k

∂H
(0)
jk

∂pµ
U∗jαUkγ = S(0µ)

αγ (λγ − λα),

∑
j,k

∂H
(1)
jk

∂pµ
U∗jαUlγ = S(1µ)

αγ (λγ − λα),

for some σ
(0)
αν , σ

(1)
αν , S

(0µ)
αγ and S

(1µ)
αγ . The same arguments hold as in the β = 1 case, but in

this case two columns proportional to (λγ−λα) appear in the right-hand side of Eq. (2.31),
instead of only one for the β = 1 case.

Case β = 4 (GSE) Similar arguments as in the β = 2 case apply also here, but with
β = 4. For a more detailed analysis, we refer to Mehta [9, Chapter 3.2].

We finally remark that the same calculation can also be done for the Circular ensem-
bles, but here we prefer to use λj = eiθj . This will result in the Jacobian

Jβ({θi}) ∝
∏
i<j

|eiθi − eiθj |β.

The partition function for both Gaussian and Circular ensembles can now be written as

ZN,β =

∫
γN

∏
1≤i<j≤N

|λi − λj|β
N∏
i=1

e−βV (λi)dλi, (2.33)

where γ is the contour in the complex plane, which is the real line R for the Gaussian
ensembles and the unit circle S1 for the circular ensembles. The potential V (λ) is λ2/2
for the Gaussian ensembles and 0 for the Circular ensemble.
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3 Transition to chaos

In the previous sections symmetric spaces appeared a number of times. In fact, these
spaces are closely related to random matrix theory. We will give an introduction to sym-
metric spaces in Section 3.1, introduce the Calogero-Sutherland models and it’s connec-
tion to symmetric spaces. This in turn can be used to discuss Dyson Brownian motion
and the Coulomb gas analogy. The language of symmetric spaces and zonal spheri-
cal functions, allows us to see Dyson Brownian motion as the transition from diagonal
Hamiltonians to the Gaussian ensembles. Therefore, Dyson Brownian motion becomes
a method to probe the energy statistics in the transition from integrable (diagonal) to
chaotic (Gaussian) Hamiltonians. These intermediate statistics are important for the
concept of multifractality.

3.1 Cartan symmetric spaces

In this section we follow the review by Caselle and Magnea [18] closely.
Generally, a symmetric space is of the form G/K, a coset space. Here K is a subgroup

of G and elements of G/K are sets of the form gK for g ∈ G. There is an action of G on
G/K given by g1(gK) = (g1g)K.

Suppose G acts on a space V . Then we define the isotropy subgroup Gv0 as the
elements g ∈ G that leave v0 fixed, Gv0 = {g ∈ G | gv0 = v0}. The orbit of G at v0,
denoted by Gv0, is the set that can be reached from v0, Gv0 = {gv | g ∈ G}. In particular,
the orbit of Gv0 at v0 is Gv0v0 = {v0}. If the orbit of a point v0 is the entire space V , that
is, Gv0 = V , we say that G acts transitively on V . In this case we have an isomorphism
G/Gv0 ' V .

Example 3.1.1. Let G = SO(3), V = S2 be the unit sphere inside R3, then G acts
transitively on V . Let v0 be the north pole, then the subgroup K = SO(2) leaves v0

fixed. Therefore, we have the isomorphism SO(3)/SO(2) ' S2. 4

3.1.1 Lie algebras and root spaces

In this subsection we give a quick recap of Lie algebras and root spaces.

Definition 3.1.2 (Lie algebra). A Lie algebra g is a vector space over a field K of
characteristic 0, together with a multiplication denoted by the bracket [·, ·] : g × g → g,
satisfying for X, Y, Z ∈ g and α, β ∈ K,

a) [X,αY + βZ] = α[X, Y ] + β[X,Z],

b) [X, Y ] = −[Y,X],

c) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (Jacobi identity).

A Lie algebra g generates a Lie group G using the exponential map, exp(tiXi) ∈ G
for ti ∈ K, {Xi} a basis of the Lie algebra g.

An ideal i is a subalgebra which is closed under taking brackets [g, i] ⊂ i. A Lie
algebra is called simple if it has no ideals other than {0} and g and semisimple if it is a
direct sum of simple Lie algebras.
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Definition 3.1.3 (Lie algebra representation). A Lie algebra representation (ρ, V ) of g
is a vector space V together with a Lie algebra homomorphism ρ : g→ gl(V ), that is, a
homomorphism satisfying ρ([X, Y ]) = [ρ(X), ρ(Y )]. Here gl is the space End(V ) of linear
maps V → V with bracket [·, ·] the regular commutator bracket [X, Y ] = XY − Y X.

Partial application of [·, ·] defines the adjoint map adX : g → g, Y 7→ [X, Y ]. This
is an example of a Lie algebra representation. Suppose {Xi} is a basis for g, then
[Xi, Xj] = Ck

ijXk can again be written in terms of this basis. The coefficients Ck
ij are

called the structure constants.
An abelian subalgebra h satisfies [H1, H2] = 0 for all H1, H2 ∈ h. A maximal abelian

subalgebra is called a Cartan subalgebra. If the Lie algebra is semisimple and of rank r,
there is a basis {H1, . . . , Hr} of h. Furthermore, there exists root vectors Eα, labeled by
α = (α1, . . . , αr), which are the shared eigenvectors of theHi in the adjoint representation,

[Hi, Eα] = αiEα = α(Hi)Eα,

where α : h → K is the functional defined on the basis by α(Hi) = αi and extended
linearly. Such functional is called a root. For a general representation (ρ, V ) we call such
functionals weights ; a weight µ is a linear functional h → K such that ρ(H)v = µ(H)v,
for H ∈ h, v ∈ V . There exists a common eigenbasis of V for h, and we denote this basis
by |µ〉, hence

ρ(Hi)|µ〉 = µ(Hi)|µ〉 = µi|µ〉,

where µi = µ(Hi).
For any root α and weight µ the following holds,

2α · µ
α · α

= −(p− q),

where p and q are positive integers such that Eα|µ + pα〉 = 0 and E−α|µ − qα〉 = 0.
This severely limits the possibilities for the adjoint representation, where µ is also a
root and allows a complete classification of simple root systems. There are the classical
root systems An, Bn, Cn and Dn related to the classical Lie groups SU(n + 1), SO(2n +
1), Sp(2n) and SO(2n). There are also 5 exceptional root systems E6, E7, E8, F4 and G2,
but we will not consider these in this review.

Let V be the space spanned by the roots. With the canonical basis {ei}ni=1 of Rn, the
root systems are as follows [18, Section 2.7]

An−1 V is the hyperplane with normal vector (1, 1, . . . , 1). The root lattice contains
{ei − ej, i 6= j}.

Bn V = Rn and the roots are {±ei,±ei ± ej, i 6= j}.

Cn V = Rn and the roots are {±2ei,±ei ± ej, i 6= j}.

Dn V = Rn and the roots are {±ei ± ej, i 6= j}.

BCn V = Rn and the roots are {±ei,±2ei,±ei ± ej, i 6= j}.

Here we included BCn, which belongs to a super-algebra, for later use, however BCn is
not a root system because it contains scalar multiples of ei other than −ei, namely 2ei.
It will be used when discussing restricted root systems.
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3.1.2 Symmetric spaces

Let σ : g → g be a lie algebra automorphism (a homomorphism to itself), such that
σ2 = 1. Such an automorphism is called involutive. In the following let g always be a
compact simple Lie algebra, and σ an involutive automorphism. Define the positive and
negative eigenspaces3

k := {X ∈ g | σ(X) = X},
p := {X ∈ g | σ(X) = −X},

so that g = k⊕ p. We have the commutation relations

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k, (3.1)

therefore, k is a subalgebra, called a symmetric subalgebra, but p is not.
By multiplying p by i, called the Weyl unitary trick, we get a noncompact algebra

g∗ = k⊕ ip. Now k is a maximal compact subalgebra of g∗. The corresponding symmetric
spaces are the coset spaces G/K and G∗/K. The group K is called a symmetric subgroup.

The involutive automorphism σ can be extended to an automorphism G → G, by
defining σ(eX) = eσ(X). Then σ(k) = k for k ∈ K. Suppose that there are no other
elements in G that satisfy σ(g) = g. It can be shown that gpσ(g−1) ∈ P for p ∈ P . Then
this defines an action of G on P , which is transitive. Furthermore, there exists a fixed
point x0 ∈ P such that Gx0 = K so that G/K ' P and the tangent space of G/K at the
origin is spanned by p.

Example 3.1.4. Consider the algebra so(3) with generators

L1 =

0 0 0
0 0 1
0 −1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

 0 1 0
−1 0 0
0 0 0

 . (3.2)

These satisfy the commutation relations [Li, Lj] = εijkLk, where εijk is the Levi-Chivita
symbol. The element exp(tiLi) ∈ SO(3) is the rotation around the axis ~t with angle ‖t‖.
Therefore, the generator L3 spans the subalgebra k = so(2) which keeps the north pole
fixed

exp
(
t3L3

)0
0
1

 =

0
0
1

 .

We see that SO(3)/SO(2) ' S2. Furthermore, the coordinates t1 and t2 can also be
used to move the north pole to any point on the unit sphere, that is, we have the map
π : SO(3)→ S2, g 7→ gx0. Here x0 is the north pole, so the kernel of π is SO(2), and we
establish the isomorphism SO(3)/SO(2) ' S2.

The generators L1 and L2 do not commute, the subalgebra h spanned by L2 is a
maximal abelian subalgebra in p. To summarize,

k =< L3 > p =< L1, L2 > h =< L2 > ,

where < X1, . . . , XN > denotes the set generated by linear combinations of X1, . . . , XN .
The raising and lowering operators Eα need to satisfy [Hi, Eα] = αiEi, for i = 1, . . . , r,

3k is the fraktur variant of k.
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where r is the rank of h. In this case r = 1 and H1 = L2, and E±1 = 1√
2
(−L1 ± L3).

Indeed

[L2, E±1] =
1√
2

([L1, L2]± [L2, L3]) =
1√
2

(L3 ± L1) = ±E±1.

Any element p ∈ P can be written as p = khk−1x0, where h = eH , H ∈ h and k ∈ K.
The group K leaves x0 fixed, hence p = khx0. Usually t3 is denoted by ϕ and is called the
azimuthal angle, and t2 is denoted by θ and is called the polar angle.4 The coordinates
(t3, t2) = (ϕ, θ) are called spherical coordinates. 4

The statements in the previous example are in fact general; Let h ⊂ p be a maximal
abelian subalgebra in p. Then every element p ∈ P ' G/K can be written as p =
khk−1x0 = khx0, where k ∈ K and h = eH , where H ∈ h. The point x0 is the fixed point
of K. Both k and h are not unique, k is defined up to an element in M , h is defined up
to an element in M ′/M , where M and M ′ are respectively the centralizer and normalizer
of K,

M := {k ∈ K | kHk−1 = H,H ∈ h},
M ′ := {k ∈ K | kHk−1 = H ′, H,H ′ ∈ h}.

The coordinates (k(x), h(x)) are called spherical coordinates, k(x) is called the angular
coordinate and h(x) is called the spherical radial coordinate.

Alternatively, there is also the Iwasawa decomposition. Decompose g into the spaces
k, h and n, where

n =
⊕
α∈R+

g
(α)
+ ,

is the sum of root spaces of positive roots, with g
(α)
+ the space generated by Eα. Then

the Iwasawa decomposition is g = n⊕h⊕ k. Let N be the Lie group generated by n, then
the Iwasawa decomposition of G is G = NHK.5

To any compact symmetric space there is also an associated noncompact symmetric
space G∗/K.

Example 3.1.5. Let g = so(3), k = so(2), with generators L1, L2 and L3 as in Exam-
ple 3.1.4. We have

exp
(
it1L1

)0
0
1

 =

1 0 0
0 cosh(t1) sinh(t1)
0 sinh(t1) cosh(t1)

0
0
1

 =

 0
sinh(t1)
cosh(t1)

 ,

exp
(
it2L2

)0
0
1

 =

cosh(t2) 0 sinh(t2)
0 1 0

sinh(t2) 0 cosh(t2)

0
0
1

 =

sinh(t1)
0

cosh(t1)

 ,

so this is a two sheeted hyperboloid H2 as the points satisfy

x2 + y2 − z2 = −1.

4

Note that the sphere S2 ' SO(3)/SO(2) has constant positive curvature and the
hyperboloid H2 ' SO(3)∗/SO(2) has constant negative curvature.

4This is the ISO convention commonly used in physics. In mathematical texts the meaning of ϕ and
θ is often switched.

5In the literature one usually finds the notation G = KAN
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3.1.3 Curvature

It is possible to define a metric on a Lie algebra g. This is used to define a metric on the
symmetric space G/K, which is in turn needed to calculate the Jacobian. The metric is
defined using the Killing form. In terms of the basis {Xi} of the Lie algebra g this is

gij = K(Xi, Xj) = tr(adXi, adXj) = Cr
isC

s
jr.

Example 3.1.6. The metric on so(3) is

gij = Cr
isC

s
jr = εisrεjrs = −2δij.

4

Note that the metric is negative definite. In fact, a theorem by Weyl states that
a simple Lie group is compact if and only if the Killing form is negative definite. We
will typically add a minus sign to make the metric positive definite. The metric can be
extended to the symmetric space G/K. At the identity the metric gij(I) is defined using
the restriction of gij to the tangent space p. For other points M ∈ G/K we can apply a
group transformation to get back to the identity, and define

grs(M) = gij(I)
∂xi(I)

∂xr(M)

∂xj(I)

∂xs(M)
.

Example 3.1.7. The metric of SO(3)/SO(2) at (ϕ, θ) is given by

gij =

(
1 0
0 sin2 θ

)
. (3.3)

The metric on SO(3)∗/SO(2) at (ϕ, θ) is

gij =

(
1 0
0 sinh2 θ

)
. (3.4)

4

It can be shown, for example in Chapter IV of Helgason [30], that the Riemann
curvature tensor in the basis {Xi} is given by

Rn
ijk = Cn

imC
m
jk.

Using the Jacobi identity, this results in

Rijkl = gimR
m
jkl = Cr

isC
m
jnC

s
mrC

n
kl = −Cr

isC
m
jn(Cs

krC
n
lm − Cs

lrC
n
km)

= −(Cr
isC

s
krC

n
lmC

m
jn − Cr

isC
s
lrC

n
kmC

m
jn) = −(gikglj − gilgkj).

This implies that the symmetric space G/K has constant sectional curvature equal to
−1, but can also be chosen +1 by multiplying the metric with −1. For the noncompact
symmetric space G∗/K, due to the factor i of the Weyl unitary trick, the sectional
curvature changes sign when going from G/K to G∗/K. Associated to the same subgroup
K there is therefore both a positively and negatively curved symmetric space.
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There is also a zero-curvature symmetric space G0/K, which can be seen as the limit of
either G/K or G∗/K where the radius of curvature goes to infinity. We refer to Helgason
Chapter V [30] for a more complete discussion of zero-curvature symmetric spaces. The
group G0 is defined as the semi-direct product G0 = K n p, where g0 = (k, p) ∈ G0 acts
on G0/K as

g0(x) = Ad(k)x+ p, k ∈ K, x, p ∈ G0/K.

In contrast to G/K and G∗/K, G0/K can be identified with a subspace p of the Lie
algebra g, instead of the Lie group G.

Example 3.1.8. Any unitary matrix U can be written as U = exp(iH), where iH is
an anti-Hermitian matrix. An arbitrary N ×N matrix M can be written in terms of an
Hermitian matrix H ′ and an anti-Hermitian matrix iH,

M = H ′ + iH where H ′ = 1
2
(M +M †) and iH = 1

2
(M −M †).

In other words, we have a decomposition of the N × N matrices glN , into subspaces of
anti-Hermitian matrices k and Hermitian matrices p,

glN = k⊕ p,

where k and p are the positive and negative eigenspaces of the involution

σ : glN → glN
M 7→ −M †

Now let G = GL(N,C), K = U(N) and p be the space of Hermitian matrices. Then we
may identify G0/K with p, where G0 = Knp and we have the action of g0 = (U,H ′) ∈ G0

on G0/K defined by

g0(H) = UHU−1 +H ′ for H ∈ G0/K.

This is also precisely the symmetry group of measure PG(H)dH of the Gaussian Unitary
Ensemble. Therefore, the Gaussian Unitary Ensemble corresponds to the zero-curvature
symmetric space associated to G = GL(N,C) and K = U(N). Similar statements can
be made for the Gaussian Orthogonal Ensemble and Gaussian Symplectic Ensemble, for
which we refer to Chapter 8 of Caselle and Magnea [18]. 4

3.1.4 Restricted root systems

Suppose g is a Lie algebra, and h a Cartan subalgebra. Recall that roots of g relative to
h are nonzero linear functionals α ∈ h∗ such that there exists an Eα ∈ g, called a root
vector or raising/lowering operator, satisfying

[H,Eα] = α(H)Eα for all H ∈ h. (3.5)

A restricted root system is a root system of g relative to a, not necessarily maximal,
abelian subalgebra a. In the case of symmetric spaces we consider the subset a = h∩p of
some Cartan subalgebra h, which lies in p. Because the subalgebra a need not be maximal,
there might be multiple independent root vectors E1

α, . . . , E
mα
α satisfying Eq. (3.5) for the

same root α. In this case we say that α has multiplicity mα.
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3.2 The Laplacian

When solving the Schrödinger equation for the hydrogen atom, one uses separation of
variables and write the solution ψ(r, θ, ϕ) as ψ(r, θ, ϕ) = R(r)Y (θ, ϕ), where R(r) is the
radial part and Y (θ, ϕ) the angular part. For the angular part Y (θ, ϕ), the Schrödinger
equation reduces to the Laplace equation in spherical coordinates

∆S2Y (θ, ϕ) =

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
Y (θ, ϕ),

for which we can find eigenfunctions Y m
l with eigenvalues l(l+ 1), l ∈ Z≥0, m = −l,−l+

1, . . . , l. These eigenfunctions are called spherical harmonics or zonal spherical functions.
There are a couple of things to note about the spherical harmonics. Firstly, they form a
basis of the square integrable functions on S2, L2(S2). This is the Peter-Weyl theorem.
Consequently, they can be used to do an analog of Fourier transforms on S2. Secondly,
the spherical harmonics are given in terms of the Legendre polynomials Pm

l (z) (See for
example [31, p. 391])

Y m
l (θ, ϕ) ∝ Pm

l (cos θ)eimϕ.

Finally, the numbers l and m are quantum numbers, related to L2 = L2
1 + L2

2 + L2
3 and

L3 respectively, where L1, L2 and L3 are the angular momentum operators. The operator
L2 is called the Casimir operator.

Similar statements as these statements about the eigenfunctions of the Laplace oper-
ator on the symmetric space S2 ' SO(3)/SO(2) can be made for all symmetric spaces.
This is the subject of this subsection.

Let g be a semisimple Lie algebra of rank r with basis {Xi}ni=1, where n is the dimen-
sion of g. A Casimir operator C is a symmetric homogeneous polynomial satisfying

[C,Xi] = 0 for all Xi ∈ g.

The Casimir operators are elements of the polynomial algebra in Xi, K[X1, . . . , Xn]. The
bracket is defined as if [Z,X] = ZX−XZ; For C of the form C = Xi1 . . . Xik and Y ∈ g,

[C, Y ] := Xi1 . . . Xik−1
[Xik , Y ] + · · ·+ [Xi1 , Y ]Xi2 . . . Xik . (3.6)

Here we used the identity [AB, Y ] = A[B, Y ] + [A, Y ]B for the regular commutator
bracket [A, Y ] = AY − Y A. The definition Eq. (3.6) is extended linearly for general
Casimir operators C.

Let gij be the inverse metric on g. The simplest quadratic Casimir operator associated
with g is

C = gijXiXj. (3.7)

In general, a linear independent basis of Casimir operators consists of completely homo-
geneous polynomials in Xi, i = 1, . . . , n. We refer the reader to Hall [25, Theorem 9.10]
for a proof of this statement. Therefore, as will be explained in Section 4.3, a basis of
Casimir operators can be found as follows. Consider the characteristic polynomial

det

(
n∑
i=1

ti ad(Xi)− λIn

)
=

n∑
k=0

(−λ)n−kϕk(t
i)

Here ϕk(t
i) are symmetric homogeneous polynomials in ti. In general there will be r

independent coefficients ϕk(t
i). Choose the r independent ones and make the substitution

ti → Xi. We remark that the degree 2 term results in Eq. (3.7).
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Example 3.2.1. Consider the rank 1 Lie algebra so(3). Due to the commutation relations
[Li, Lj] = εijkLk, we see that the matrices of the adjoint representation are given by
Eq. (3.2). Let t = (t1, t2, t3) and L = (L1, L2, L3), then the characteristic polynomial is

det(t · L− λI3) =

∣∣∣∣∣∣
−λ t3 t2

−t3 −λ t1

−t2 −t1 −λ

∣∣∣∣∣∣ = (−λ)3 + t2(−λ)

Therefore, ϕ1(t) = t2 can be used to obtain the Casimir operator

C = L2
1 + L2

2 + L2
3.

Here we have taken the freedom to rescale with a constant. This Casimir operator is also
denoted with L2. 4

Elements X of the Lie algebra are left invariant vector fields, so they define a tangent
vector Xg at any point g ∈ G, but are uniquely defined by the value at the identity,
X = Xe ∈ TeG. Tangent vectors are differential operators in the following way. Let f be
a smooth function on G, g ∈ G then Xg is the derivation along a curve through g with
tangent vector Xg,

Xg(f) =
d

dt
f(exp(tX)g)|t=0.

Here we chose a natural curve γ(t) = exp(tX)g through g.
This can be extended to the symmetric space G/K in the following way. Let π : G→

G/K, g 7→ gK be the projection map. Then the pullback map π∗ is defined as

π∗ : C(G/H)→ C(G), f 7→ f ◦ π,

where C(G) are the continuous functions on G. The map π∗ is injective; if f, g ∈ G
are equal at all points g ∈ G, then in particular they are equal at representatives in
G/K. The image of π∗ are the K-invariant functions on G, C(G)K , on which we can
with elements X ∈ g. For elements X ∈ k, due to the invariant property, X(f) = 0.

For example, consider S2 ' SO(3)/SO(2) and the tangent vector L1 = x2∂3 − x3∂2.
Let x be local coordinates from the embedding of S2 in R3. In these coordinates, the
curve γ(t) = exp(tL1)x becomes

γ(t) = exp(tL1)x =

1 0 0
0 cos t − sin t
0 sin t cos t

x1

x2

x3

 =

 x1

x2 cos t− x3 sin t
x2 sin t+ x3 cos t

 ,

so that, using the chain rule,

L1f =
d(x2 cos t− x3 sin t)

dt

∣∣∣∣
t=0

∂2f +
d(x2 sin t+ x3 cos t)

dt

∣∣∣∣
t=0

∂3f = (x2∂3 − x3∂2)f.

Expressed in local coordinates, Casimir operators are called Laplace operators and
usually denoted by ∆. For the special case Eq. (3.7) it is called the Laplace-Beltrami
operator ∆B,

∆Bf = gij∇i∇jf = gij(∂i∂j − Γkij∂k)f =
1√
|g|

∂

∂xi
gij
√
|g| ∂
∂xj

f, (3.8)
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where g = det gij and ∇ix
j = ∂ix

j + Γjkix
k.

All independent Laplace operators on a symmetric space G/K can be found as follows.
First one finds all Casimir operators on g, and then one notes that for X ∈ k, X(f) = 0,
so to obtain independent operators we might as well set Xγ = 0 for all Xγ ∈ k. This
results in r independent Laplace operators, where r is the rank of the symmetric space,
that is, the number of generators in the maximally commuting subalgebra h ⊂ p.

Example 3.2.2. With the metric Eq. (3.3), the Laplace-Beltrami operator becomes

∆B =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
. (3.9)

The same expression is found when rewriting L2
1 + L2

2 + L2
3, with L1 = x2∂3 − x3∂2, etc.,

in spherical coordinates. This is expected, because SO(3)/SO(2) is of rank 1, so L2 is
the only Casimir operator. The coordinate θ is the radial coordinate of the spherical
coordinates (k, h) = (ϕ, θ). The radial part of ∆′B is therefore the first term in Eq. (3.9),
and ∂2

ϕ is the transversal part. 4

In general, the radial part ∆′B of the Laplace-Beltrami operator ∆B is given by

∆′B =
1

J (j)

r′∑
α=1

∂

∂qα
J (j) ∂

∂qα
, (3.10)

where J (j) =
√
|g| and q = log h(x) are the radial coordinates. This is because for

the radial coordinates xi, the metric gij is the Kronecker delta δij, as the corresponding
tangent vectors Xi commute with every other tangent vector in p, by definition of h.
Let us elaborate on that. Let Hi ∈ h, and let {H1, . . . , Hr, Eα1 , E−α1 , . . . , Eαm , E−αm}
be a basis of g, where E±α1 , . . . , E±αm are root vectors associated with h. That is, the
following relations hold

[Hi, Hj] = 0 and [Hi, E±αk ] = ±αi(Hk)E±αk for all 1 ≤ i, j ≤ r, 1 ≤ k ≤ m.

Then in the adjoint representation, Hi has the form

Hi = diag(0, . . . , 0︸ ︷︷ ︸
r times

, α1(Hi),−α1(Hi), . . . , αm(Hi),−αm(Hi)),

so that the group element etHi has the form

etHi = diag(1, . . . , 1︸ ︷︷ ︸
r times

, etα1(Hi), . . . , e−tαm(Hi)),

and a general element e~t·
~H ∈ H, where ~t = (t1, . . . , tr) and ~H = (H1, . . . , Hr) has the

form
e
~t· ~H = diag(1, . . . , 1︸ ︷︷ ︸

r times

, e
~t·α1 , . . . , e

~t·αm),

where ~t · αj :=
∑

i t
iαj(Hi). The same reasoning will apply for restricted root systems,

but now the roots αj are in the restricted root lattice. It can now be seen that the radial
part of the metric is the identity, hence Eq. (3.9) reduces to Eq. (3.10).
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The Jacobian takes the form [18, Equation (6.30)]

J (0)(q) =
∏
α∈R+

(~q · α)mα ,

J (−)(q) =
∏
α∈R+

(sinh(~q · α))mα ,

J (+)(q) =
∏
α∈R+

(sin(~q · α))mα ,

for symmetric spaces of zero (0), negative (−) and positive (+) curvature.

Example 3.2.3. The radial parts of the Laplace-Beltrami operator on S2 and H2 are
given by

∆′B =
1

sinh θ
∂θ sinh θ ∂θ for H2,

∆′B =
1

sin θ
∂θ sin θ ∂θ for S2.

4

3.2.1 Calogero-Sutherland models

Let us start with the observation that the Vandermonde determinant ∆r(q) =
∏

i<j(q
i−

qj) satisfies
r∑
i=1

∂2∆r

∂(qi)2 = 0.

In other words, it is the ground state of the r particle Hamiltonian

H =
1

2

r∑
i=1

p2
i , (3.11)

where pi = −i ∂
∂qi

. This is the simplest case of the Calogero-Sutherland Hamiltonian,

H =
1

2

r∑
i=1

p2
i +

∑
α∈R+

g2
αv(q · α). (3.12)

Here Eq. (3.11) corresponds to the case where gα = 0 for all α ∈ R+. The potential v is
usually taken one of the following

vI(z) = z−2,

vII(z) = sinh−2(z),

vIII(z) = sin−2(z).

For these potentials the Calogero-Sutherland Hamiltonian is related to the Laplace-
Beltrami operator on a symmetric space with zero curvature for v = vI , negative curvature
for v = vII and positive curvature for v = vIII . Let ρ ∈ h∗ be the functional

ρ =
1

2

∑
α∈R+

mαα,
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with norm squared

ρ2 = ρ · ρ =
r∑
i=1

ρ(Hi)ρ(Hi).

Furthermore, let ξ(q) be the square root of the Jacobian, ξ2(q) = J(q). Then the
Calogero-Sutherland Hamiltonian is given in terms of the radial part of the Laplace-
Beltrami operator by [18, Equation (7.5)]

H = ξ(q)1
2
(∆′B ± (−1)ρ2)ξ−1(q) (− for II,+ for III, ρ = 0 for I)

if and only if the coupling constants gα are given by

gα =
mα(mα + 2m2α − 2)|α|2

8
. (3.13)

Now indeed ξ(q) trivially is an eigenfunction of the Calogero-Sutherland Hamiltonian with
eigenvalue ±ρ2/2. Furthermore, the Jacobian J(q) is the probability density function of
such ground state ξ(q) of the Calogero-Sutherland Hamiltonian.

Given a eigenfunction ϕλ of ∆′B, with eigenvalue −λ2 ± ρ2, the function

ψλ(q) := ξ(q)ϕλ(q) (3.14)

is an eigenfunction of the Calogero-Sutherland Hamiltonian with eigenvalue −λ2/2. The
eigenvalues of ∆′B will be discussed in Section 3.3.1.

Now suppose for all roots α, mα = 2, and suppose furthermore that 2α is not a root,
that is, m2α = 0. In this case the coupling constants Eq. (3.13) are all zero, and the
Calogero-Sutherland Hamiltonian Eq. (3.12) is a sum of single particle Hamiltonians H0,

H =
r∑
i=1

1

2

∂2

∂(qi)2 =:
r∑
i=1

H0. (3.15)

3.2.2 Coulomb gas analogy and Fokker-Planck

The Calogero-Sutherland Hamiltonian is a quantum analogy. There is also a classical
analogy called the Coulomb gas analogy. Instead writing down a differential equation for
the wave amplitude ξ, this should be a differential equation for the probability density
function, the square of the wave function. Inspired by Eq. (3.15) let F be the following
differential operator

F = J∆′BJ
−1

Then of course the Jacobian J is an eigenfunction of F with eigenvalue 0. Similarly as
in, Eq. (3.14) for any eigenfunction ϕλ(q) of the radial part of Laplace-Beltrami operator
∆′B we get an eigenfunction of F , namely J(q)ϕλ(q).

We will now give F the interpretation of the Focker-Planck operator, so that the
obtain Dyson Brownian motion in the Coulomb gas analogy. Consider the partition
function Eq. (2.33)

ZN,β =

∫
γN
e−βW ({xi})

N∏
i=1

dxi =

∫
γN
P ({xi})

∏
i

dxi,
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where

W ({xi}) =
N∑
i=1

V (xi)−
∑
i<j

log |xi − xj|. (3.16)

Then with Eq. (3.10) this results in

FP =
N∑
j=1

∂

∂xj
J
∂

∂xj
J−1P

=
N∑
j=1

(
∂2P

∂x2
j

− β ∂

∂xj
[E(xj)P ]

)
,

where E(xj) = −∂W ({xj})/∂xj, which for the Gaussian ensembles is

E(xj) = −xj +
∑
i 6=j

1

xj − xi
.

When introducing a fictitious time dependence of P , such that

lim
t→∞

P ({xj}, t) = P ({xj}) = J({xj}),

the equation

∂P

∂t
= FP =

N∑
j=1

(
∂2P

∂x2
j

− ∂

∂x
[βE(xj)P ]

)
describes Brownian motion of N particles in 1D with position xj with drift βE(λj) and
diffusion constant 1. This equation is called the Fokker-Planck equation. The analogy
with particles in 1D can also already be seen from the partition function Eq. (3.16),
which consists of a Coulomb interaction, confined to 2 dimensions,

∑
i 6=j log |xi− xj| and

a background potential V . Therefore, the eigenvalues of random matrix ensembles can
be seen as infinity long charged rods confined to move in 1 dimension. In this analogy,
level repulsion is the repulsion of like charges.

For the Gaussian ensembles, this background potential prevents particles from drifting
off to infinity. Let us rescale the positions with

√
N : x→

√
Nx, then the new partition

function becomes

ZN,β =

∫
e−N

2βS[x]

N∏
i=1

dxi,

where S[x], which can be seen as the action, is given by

S[x] =
1

N

N∑
i=1

V (xi)−
1

N2

∑
i<j

log |xi − xj|. (3.17)

The parameter β plays the role of inverse temperature. In the limit of N →∞, only sta-
tionary paths of the action S contribute. This allowed Wigner to calculate the asymptotic
behaviour of the spectral density ρ(x), the Wigner’s semicircle law. We need a lemma to
relate the resolvent to the spectral density first.

Lemma 3.2.4. Let δ(x) be the Dirac delta. Then

1

2πi
lim
ε→0

[
1

x− iε
− 1

x+ iε

]
= δ(x).
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Proof. This identity is an identity of distributions, and hence only makes sense under the
integral sign. Let us integrate the left-hand side over some interval [a, b]. Suppose f is a
holomorphic function and consider the integral

1

2πi

∫ b

a

[
1

y − iε
− 1

y + iε

]
f(y)dy =

1

2πi

[∫ b

a

f(y)

y − iε
dy +

∫ a

b

f(y)

y + iε
dy

]
=

1

2πi

∮
C

f(y)

y
dy +O(ε),

where C is the rectangle with vertices (a,±ε), (b,±ε). There is an order ε contribution
due to the fact that the two sides of C of length 2ε were missing and due to the fact that
we shifted the evaluation of f from y to y + iε. The residue theorem gives

lim
ε→0

1

2πi

∫ b

a

[
1

y − iε
− 1

y + iε

]
f(y)dy =

{
f(0) if 0 ∈ [a, b],

0 otherwise.

From the lemma it also follows that

lim
ε→0

Im
1

x− iε
= πδ(x).

This implies

1

π
lim
ε→0

Im
1

N

N∑
i=1

1

x− iε− xi
=

1

N

N∑
i=1

δ(x− xi) = %(x). (3.18)

Proposition 3.2.5 (Wigner’s semicircle law). The spectral density ρ(x) of a Gaussian
ensemble approaches a semi-elliptical shape,

lim
N→∞

√
Nρ
(√

Nx
)

=
1

2π

√
4− x2. (3.19)

Proof. In this proof we follow [32, Chapter 3.1] and [33, Chapter 1.2]. Note that the
action Eq. (3.17) scales with N as O(1). This allows us to do a semi-classical / saddle
point approximation and assume that, as N →∞, the only contribution to the partition
function is from the saddle points. These saddle points satisfy the equations of motion.
The equations of motion, obtained by varying the action with respect to xi, are

V ′(xi) =
2

N

∑
i 6=j

1

xi − xj
, for i = 1, . . . , N.

Define the resolvent, a.k.a. Green’s function

G(x) =
1

N

N∑
i=1

1

x− xi
.

This is the Stieltjes transform of the spectral density %(x)/N . The spectral density can
be extracted from this using Eq. (3.18),

1

N
%(x) =

1

π
lim
ε→0

ImG(x− iε).
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Let us compute

G(x)2 +
1

N
G′(x) =

1

N2

(
N∑

i,j=1

1

x− xi
1

x− xj
−

N∑
i=1

1

(x− xi)2

)

=
1

N2

N∑
i,j=1
i 6=j

1

x− xi
1

x− xj

With
1

x− xi
1

x− xj
=

[
1

x− xi
− 1

x− xj

]
1

xi − xj
,

we obtain, together with the equations of motions,

G(x)2 +
1

N
G′(x) =

2

N2

N∑
i=1

1

x− xi

∑
j 6=i

∑
1

xi − xj =
1

N

N∑
i=1

V ′(xi)

x− xi
.

Using the rational function

P (x) =
1

N

N∑
i=1

V ′(x)− V ′(xi)
x− xi

,

the equation for G(x) can be written as

G(x)2 +
1

N
G′(x) = V ′(x)G(x)− P (x). (3.20)

This equation is called the Riccati equation. Let us take the N → ∞ limit. The term
G′(x)/N drops out. Let us write G(x) = limN→∞G(x) and similarly define P , then the
differential equation reduces to an algebraic equation,

G
2 − V ′G+ P = 0,

with solution

W =
1

2

(
V ′ −

√
(V ′)2 − 4P

)
,

so the (rescaled) spectral density is given by

%(x) =
1

2π

√
4P − (V ′)2.

In the Gaussian case P = 1 and V ′ = x.

Remark 3.2.6. From the Riccati equation, which is a differential equation for the Green’s
function, a differential equation for the characteristic polynomial can be derived. Let
ϕ̃N(x) be the characteristic polynomial of the matrix with eigenvalues xi,

ϕ̃N(x) =
N∏
i=1

(x− xi), (3.21)
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then
1

N

∂

∂x
log ϕ̃N(x) =

1

N

ϕ̃′N(x)

ϕ̃N(x)
=

1

N

N∑
i=1

1

x− xi
= G(x).

Here we remark that this equation holds for eigenvalues xi such that the action Eq. (3.17)
is minimized, and a saddle point approximation of the integral can be done. In other
words, we have, up to prefactors,

ϕ̃N(x) ≈ 〈det(x−H)〉

This is called Heine’s formula.
The Riccati equation for G(x) Eq. (3.20) becomes a differential equation for ϕ̃N(x),

1

N2

ϕ̃′N(x)2

ϕ̃N(x)2 +
1

N2

ϕ̃′′N(x)ϕ̃N(x)− ϕ̃′N(x)2

ϕ̃N(x)2 =
1

N
V ′(x)

ϕ̃′N(x)

ϕ̃N(x)
− P (x),

1

N2
ϕ̃′′N(x)− 1

N
V ′(x)ϕ̃′N(x)− P (x)ϕ̃N(x) = 0.

For the Gaussian unitary ensemble, upon rescaling, this is the Hermite differential equa-
tions, and the solution is

ϕ̃N(x) = N−N/2HN(x
√
N).

3.3 Two-matrix model

The Brownian motion of the Coulomb gas is a powerful analogy to understand the eigen-
value statistics of a Random Matrix Ensemble. In the previous sections we have seen how
the Wigner-Dyson statistics corresponds to the equilibrium, t→∞ limit, of the Coulomb
gas. We will now introduce the two matrix model, which will allow us to extend the anal-
ogy to finite t, and explore a transition from Poisson statistics to Wigner-Dyson statistics.

3.3.1 Zonal spherical functions

This subsection is based on Chapter 6 of Caselle and Magnea [18] and Ben Säıd and
Ørsted [34]. The Fokker-Plank equation for Dyson Brownian motion could be written as
a conjugation of the radial part of the Laplace-Beltrami operator ∆′B. In order to explore
the Brownian at finite times t, we will now consider the eigenfunctions of the radial part
of the Laplace-Beltrami operator.

Let D(G/K) be the G-invariant differential operators on G/K, and consider the
eigenvalue equation for D ∈ D(G/K)

Dϕλ(x) = γD(λ)ϕλ(x) for all x ∈ G/K,

where λ ∈ h∗ is a label and γD(λ) is the eigenvalue. Because the Casimir operators form
a commutative algebra, the Laplace operators have common eigenfunctions, bi-invariant
under the subgroup K, ϕλ(kxk

′) = ϕλ(x) for x ∈ G/K, k, k′ ∈ K. Such eigenfunctions,
satisfying also ϕλ(e) = 1 are called zonal spherical functions.

Example 3.3.1. The eigenfunctions of the Laplace operator L2 = L2
1 + L2

2 + L2
3 on

SO(3)/SO(2) are the Legendre polynomials Pl(cos θ), with eigenvalue −l(l + 1),

L2Pl(cos θ) = −l(l + 1)Pl(cos θ).

Note that these functions do not depend on the angular coordinate ϕ, and hence are
invariant under the rotations K = SO(2) which keep the north pole fixed. 4



3.3 Two-matrix model 42

Due to the invariance property ϕλ(kxk
′) = ϕλ(x), the zonal spherical functions only

depend on the radial coordinate h. To define a radial coordinate h for x ∈ G, write x in
the Iwasawa decomposition, x = nhk for h ∈ H, k ∈ K and n ∈, and define H(x) ∈ h
to be such that h = exp(H(x)). There is an integral representation of the ϕλ due to
Harish-Chandra [35].

Theorem 3.3.2. All spherical functions on G are given by

ϕλ(g) =

∫
K

e(iλ−ρ)H(kg)dk,

where λ runs through h∗. The vector ρ is the half sum of positive roots,

ρ =
1

2

∑
α∈R+

mαα.

Furthermore, ϕλ = ϕµ if and only if λ = ωµ for some ω ∈ W in the Weyl group.

The eigenvalues of the zonal spherical functions for the radial part of the Laplace-
Beltrami operator are given by

∆′λϕλ = (−λ2 ± ρ2)ϕλ,

where ± is a + for positively curved spaces and an − for negatively curved spaces. Using
this formula, the eigenvalues of the Calogero-Sutherland Hamiltonian Section 3.2.1 can
now also be given, which justifies the assumption about the eigenvalues of ∆′B made in
Eq. (3.14).

Example 3.3.3. For the positively curved symmetric space SO(3)/SO(2), there is one
short root of length 1, so ρ2 = 1/4, hence the eigenvalues are −λ2 + 1/4 = −l(l + 1) and
we conclude that λ = l + 1/2. 4

The Dyson Brownian motion was used by Dyson for the Gaussian ensembles, however,
the current discussion did not yet consider the zero-curvature case. We will therefore now
introduce a radius of curvature and consider the limit to infinity.

Definition 3.3.4 (Deformation of g). Let g = k ⊕ p be a Lie Algebra and Cartan
decomposition. Then define gε as the set g together with the Lie bracket [·, ·]ε given by

[X,X ′]ε := [X,X ′] for X,X ′ ∈ k
[Y, Y ′]ε := ε2[Y, Y ′] for Y, Y ′ ∈ p
[X, Y ]ε := [X, Y ] for X ∈ k, Y ∈ p

This deformation is therefore a deformation of the structure constants. As the metric
is defined using structure constants for vectors in p, one can see that indeed sectional
curvature is rescaled by a factor of ε2. The following lemma, due to Ben Säıd and
Ørsted [34], states how the roots and root spaces are rescaled.

Lemma 3.3.5. Let gε as in Definition 3.3.4, ε > 0. Let R(g, h) be the set of roots in g
for the Cartan subalgebra h. Finally, denote with g(α) the root space of the root α, that
is, the space generated by the root vectors {E±α}. Then,

a) If α ∈ R(g, h), then εα ∈ R(gε, h).
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b) Given a root α ∈ R(g, h), the root space g
(εα)
ε is given by

g(εα)
ε = {εX + Y | X + Y ∈ g(α) where X ∈ k, Y ∈ p}

Proof. Let σ be the Cartan involution, which splits g into positive and negative eigenspaces
k and p. Then any element Z in the root space g(α) can be decomposed using σ

Z =
1

2
(Z + σ(Z)) +

1

2
(Z − σ(Z)) =: X + Y ∈ k⊕ p.

By definition of roots, [H,Z] = α(H)Z for α ∈ R(g, h). Since [p, p] ⊂ k and [p, k] ⊂ p,
and because H ∈ p we can conclude from [H,X + Y ] = α(H)(X + Y ) that

[H,X] = α(H)Y, [H, Y ] = α(H)X.

We need to show that [H, εX + Y ]ε = εα(H)(εX + Y ). Indeed,

[H, εX + Y ]ε = [H, εX]ε + [H,Y ]ε = [H, εX] + ε2[H,Y ] = εα(H)(Y + εX).

Let Gε be the Lie group with Lie algebra gε, and ∆′B,ε be the Laplace-Beltrami
operator on Gε/K. It’s limit is given by the following lemma.

Lemma 3.3.6. Let ∆′B,0 be defined as

∆′B,0 :=
1

J (0)

r′∑
α=1

∂

∂qα
J (0) ∂

∂qα
,

where q = log h(x) are the radial coordinates and J (0)(q) =
∏

α∈R+ (~q · α)mα. Then the
following limit holds

lim
ε→0

ε2∆′B,ε = ∆′B,0.

Proof. For the proof we refer to Ben Säıd and Ørsted [34].

The main theorem of this section is an integral representation of the zonal spherical
functions for the zero-curvature symmetric spaces, that is, for the limit ε→ 0.

Theorem 3.3.7. Let ε > 0, gε = k exp(εX) ∈ G for some fixed k ∈ K and X ∈ p.
Define

ψλ(X) := lim
ε→0

ϕλ/ε(gε).

Then this limit ψλ(X) exists and has integral representation the Harish-Chandra-Itzykson-
Zuber integral

ψλ(X) =

∫
K

eiK(Ad(k)X,Aλ)dk,

where K(·, ·) is the Killing form, and Aλ is the algebra element determined by K(Aλ, H) =
λ(H).

Furthermore, ψλ(X) are the eigenfunctions of ∆′B,0 with eigenvalue −λ2,

∆′B,0ψλ(X) = −λ2ψλ(X).
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Proof. This proof is based on the proof given by Ben Säıd and Ørsted [34]. Since ϕλ(x)
is K invariant, we may assume gε = exp(εX). Because of the Iwasawa decomposition,
H(gk−1) = H(g) for k ∈ K. Therefore, H(k exp(εX)) = H(exp(εAd(k)X)), where
Ad(k)X = kXk−1. By definition of Aλ, iK(Ad(k)X,Aλ) = iλ(P(Ad(k)X)), where P :
p→ h is the orthogonal projection of p onto h. It remains to show that

lim
ε→0

λ

ε
H(exp(εAd(k)X)) = λP(Ad(k)X),

or equivalently
d

dε
H(exp(εAd(k)X))|ε=0 = P(Ad(k)X). (3.22)

Using P we can decompose Ad(k)X = P(Ad(k)X) + Y ∈ h ⊕ h⊥. The Iwasawa de-
composition decomposes the part Y further into Y = Yk + Yn ∈ k ⊕ n. Using the
Baker-Campbell-Hausdorff formula this results in

exp(εYn) exp(εP(Ad(k)X)) exp(εYk) = exp
(
εAd(k)X +O(ε2)

)
. (3.23)

The right hand side is in NHK form, so we have

H(exp(εYn) exp(εP(Ad(k)X)) exp(εYk)) = εP(Ad(k)X). (3.24)

Apply H(·) to both sides of Eq. (3.23), use Eq. (3.24) and then derive with respect to ε at
ε = 0 to obtain Eq. (3.22). This proves the first part. The second part follows from the
fact that ϕλ(gε) is an eigenfunction of ∆′B,ε with eigenvalue −λ2+ρ2 and Lemma 3.3.6.

Example 3.3.8. Consider the Gaussian Unitary ensemble. Here K = U(N), p are the
Hermitian matrices and the Cartan subalgebra h is generated by matrices Hi, which have
a 1 on the ii-th position and 0 elsewhere. The element Aλ is the matrix with λi on the
diagonal and the Killing form reduces to the matrix trace. This results in the formula

ψλ(X) =

∫
U(N)

ei tr(UXU
†Aλ)dU = I(iAλ, X; 1),

where I(Λ, X) is the Itzykson-Zuber integral,

I(Λ, X; β) =

∫
U(N)

eβ tr(ΛUXU†)dU. (3.25)

4

3.3.2 The matrix model

The Itzykson-Zuber integral is fundamental to the study of random matrices of the form
H = H0+

√
2tH1, where H0 is a fixed Hermitian matrix, and H1 a member of the Gaussian

Unitary Ensemble. Usually H0 is chosen to be diagonal to simplify calculations. Let
y1, . . . , yN be the eigenvalues of H0, and write Ay for the matrix with y1, . . . , yN on the
diagonal, then we have H0 = Ay. The matrix H0 describes the initial conditions of the
system. In the t→∞ limit, the contribution from H0 can be ignored and we recover the
Gaussian Unitary Ensemble. Because the Gaussian ensembles are associated to quantum
systems whose classical counterpart is chaotic, we will call this transition the transition
to chaos.
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The matrix model H0 +
√

2tH1 was in fact already introduced in the original paper
by Itzykson and Zuber [36]. Furthermore, in this paper Brownian motion was used to
give a closed expression for the integral Eq. (3.25), known as the Itzykson-Zuber-Harish-
Chandra integral formula.

The probability density function of the combined H is given by

P (H) ∝ exp
(
− trH2

1

)
= exp

(
− 1

2t
tr(H −H0)2

)
.

Let us write explicitly the dependence on H0 and t and make sure the total probability
is one. Define Pt(H|H0) as

Pt(H|H0) =
1

(2πt)N(N−1)/2
exp

(
− 1

2t
tr(H −H0)2

)
.

The notation Pt(H|H0) is introduced to make the dependence on t and H0 explicit. The
matrix H can be written as UAxU

−1, where x1, . . . , xN are the eigenvalues of H. Change
variables from H to x1, . . . , xN and U , and do the unitary integral,

Pt(x|y) =
1

N !

1

(2π)N
∆N(x)2

∫
U(N)

Pt(UAxU
†|Ay)dU.

This can be rewritten in terms of the Itzykson-Zuber integral as,

Pt(x|y) =
1

N !

t−N(N−1)/2

(2π)N
2/2

∆N(x)2 exp

(
− 1

2t

N∑
i=1

(x2
i + y2

i )

)
I(Ay, Ax; t

−1)

This is the heat kernel of the Fokker-Plank equation and can be exactly solved [37]. The
two point correlation function is shown in Figure 3. This shows that for finite t, this
model is an example of a model with intermediate statistics.

With the same calculation we have

|Ui,j|2P (x; t) =
1

N !

t−N(N−1)/2

(2π)N
2/2

∆N(x)2e−
1
2t

∑N
i=1(x2i+y

2
i )

∫
U(N)

|Ui,j|2Pt(UAxU †|Ay)dU,

which is, using Morozov’s formula [38],

|Ui,j|2P (x; t) =
1

N !

t−N(N−1)/2

(2π)N
2/2

∆N(x)2e−
1
2t

∑N
i=1(x2i+y

2
i )Resx→xi,y→yi

det
(
E + 1

xi−xE
t

yi−y

)
det(E)

,

where E = [exiyj/t]
N

i,j=1. The advantage of this expression over an expectation value using
the eigenvalue-eigenvector identity to be discussed in Section 5.4 is that in this case the
unitary integral has already been done. More general versions of Morozov’s formula for
higher moments also exist [32, p.180].

Remark 3.3.9. The method of calculating probability density functions by writing down
a diffusion equation can be extended for other probability density functions as well, no-
tably for eigenfunction statistics as well, for example the probability density of obtaining
specific values of eigenfunction components, pair functions and inverse participation ra-
tios. This is done in a paper by Shukla [39].
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since the Poisson spectrum is totally uncorrelated. It is shown in Appendix G that
our result indeed satisfies both limit relations. Furthermore, it is important to
compare our formula for small but finite values of the transition parameter to the
perturbative calculations of Refs. [9, 10]. From Eqs. (3.45), (3.46), and (5.24) we
find for small *

X2(r, *)&X2, 0(r�*)=
r
* |

�

0
exp \&

k2

2 + sin
rk
*

dk (5.30)

in perfect agreement with the results of Refs. [9, 10]. Notice that the definitions of
the transition parameter differ; * in Ref. [10] has to be replaced by *2�2 to compare
the formulae. Details of the derivation of Eq. (5.30) are given in Appendix G.

For very large values of the transition parameter *, our formulae have to yield
the GUE limit,

lim
* � �

X2(r, *)=1&\sin ?r
?r +

2

. (5.31)

It seems very complicated to prove this relation starting from the integral represen-
tations (5.25) or (5.26). However, in Appendix G, we give a comparatively simple
derivation using the generating functions (3.32) and (5.15) on the unfolded scale.

Since further analytical treatment of the integrals (5.25) and (5.26) seems not
possible, we resort to a numerical calculation of formula (5.25) for some values of
the transition parameter *. In Fig. 1 we show the results for the three * values 0.1,

Fig. 1. Two level correlation function of the transition from Poisson to GUE for different values of
the transition parameter *, calculated numerically using formula (5.25). In the Poisson case, i.e., for
*=0, the function is unity which is not drawn. The three thin solid lines correspond from the left to the
right to * values of 0.1, 0.5, and 0.7, respectively. The thick solid line is the pure GUE case corresponding
to * � �.

180 THOMAS GUHR

Figure 3: Two level correlation function for the Gaussian ensembles (bold, and the two
graphs close to it) and the two matrix model H0 + tV (left most graph). Figure is from
Guhr [37, Fig. 1].
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4 Integrable systems

4.1 Andréief’s identity

The following identity due to Andréief [40] is the basis of the orthogonal polynomial
method of random matrix theory. It turns a complex integral into a determinant of
simpler integrals, which can be solved more easily with computer algebra and is also of
theoretical significance.

Lemma 4.1.1 (Andreiéf). Let g1, . . . , gN , h1, . . . , hN be functions on a measure space
(γ, σ), then

1

N !

∫
γN

det[gj(xk)]
N
j,k=1det[hj(xk)]

N
j,k=1

N∏
k=1

dσ(xk) = det

(∫
γ

gj(x)hk(x)dσ(x)

)N
j,k=1

,

whenever both sides are well defined.

In the rest of this section, we assume that the measure σ(x) is of the form σ(x) =
w(x)dx, where w(x) is a positive function which goes to zero as |x| → ∞ sufficiently fast,
that is to say that the integral

∫
γ
xkw(x)dx is finite for all k ≥ 0. The function w(x) is

called the weight function.
For the method of orthogonal polynomials, the integrand will be the Vandermonde

determinant.

Definition 4.1.2 (Vandermonde determinant). Let ∆N be the product of differences,

∆N(x) :=
∏

1≤j<k≤N

(xk − xj).

This can be expressed using a determinant, namely the Vandermonde determinant,

∆N(x) = det
[
xi−1
j

]
= det

 1 · · · 1
...

. . .
...

xN−1
1 · · · xN−1

N

 . (4.1)

Let now ϕk(x) be any monic polynomial of degree k,

ϕk(x) = xk + lower order terms.

Then, by adding rows in the Vandermonde matrix, the Vandermonde determinant can
also be written as

∆N(x) = det[ϕi−1(xj)]
N
i,j=1

and the Andréief’s identity results in∫
γN
|∆N(x)|2

N∏
k=1

w(xk)dxk = N !det

(∫
γ

ϕj−1(x)ϕk−1(x)w(x)dx

)N
j,k=1

.

It is therefore convenient to choose ϕk such that

〈ϕj, ϕk〉 =

∫
γ

ϕj(x)ϕk(x)w(x)dx = hjδjk, (4.2)
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resulting in the name orthogonal polynomial. The constant hj is needed because the
orthogonal polynomials ϕk(x) need to be monic. The partition function can now be
easily evaluated to be

ZN,2 = N !det(hj−1δjk)
N
j,k=1 = N !

N−1∏
k=0

hk. (4.3)

Let now KN(x, y), called the kernel, be defined by

KN(x, y) =
N−1∑
k=0

1

hk

√
w(x)ϕk(x)

√
w(y)ϕk(y) =

N−1∑
k=0

ψk(x)ψk(y), (4.4)

where ψk(x) =
√
w(x)ϕk(x)/

√
hk. Then due to the determinant properties | detA|2 =

detA†A = det
(∑N

i=1 AkiAkj

)
, and λ det(~v1, . . . , ~vl, . . . , ~vN) = det(~v1, . . . , λ~vl, . . . , ~vN) it

can be seen that

|∆N(x)|2
N∏
k=1

w(xk) = det[K(xi, xj)]
N
i,j=1

N−1∏
k=0

hk. (4.5)

The kernel has some important properties, which will be used in Dyson’s Theo-
rem 4.2.7.

Lemma 4.1.3 (Properties of KN(x, y)). Let KN(x, y) be as in Eq. (4.4), then

a) KN(x, y) = KN(y, x),

b)
∫
γ
KN(x, x)dx = N and

c)
∫
γ
KN(x, y)KN(y, z)dy = KN(x, z).

Proof. Properties a) and b) follow directly from the definition of K and the orthogonality
property of ϕk(x),Eq. (4.2). For c) we have∫

γ

KN(x, y)KN(y, z)dy =
N−1∑
k,l=0

1

hkhl

∫
γ

√
w(x)w(y)

√
w(z)ϕk(x)ϕk(y)ϕl(y)ϕl(z)dy

=
N−1∑
k,l=0

1

hkhl

√
w(x)

√
w(y)ϕk(x)ϕl(z)hkδkl

=
N−1∑
k=0

1

hk

√
w(x)

√
w(z)ϕk(x)ϕk(z) = KN(x, z).

4.2 Orthogonal polynomials

In this section, we will show one method for obtaining orthogonal polynomials. Further-
more, some properties of the orthogonal polynomials are discussed. We follow Chapter 5
of Eynard, Kimura and Ribault [32] unless stated otherwise.
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The method for obtaining the ϕi uses the Gram-Schmidt orthogonalization procedure.
Write

Gn = det


a0 a1 · · · an
a1 a2 · · · an+1
...

...
. . .

...
an an+1 · · · a2n

 , where an :=

∫
γ

xnw(x)dx

for the Gram-Schmidt determinant. Note that when γ = S1 is the unit circle in the
complex plane, a−n is the n-th Fourier coefficient of w. The orthogonal polynomials ϕn
are given by

ϕn(x) =
1

Gn−1

det


a0 a1 · · · an
a1 a2 · · · an+1
...

...
. . .

...
an−1 an · · · a2n−1

1 x · · · xn

 . (4.6)

With this definition ϕn is monic. The ϕn are also indeed orthogonal, since the inner
product

〈ϕn(x), xk〉 =
1

Gn−1

det


a0 · · · an
... · · · ...

an−1 · · · a2n−1

ak · · · an+k


is zero for k < n because the same row appears twice. For m < n, ϕm(x) is a linear com-
bination of xk with k < n, so ϕm(x) is orthogonal to ϕn(x) for m < n. By interchanging
labels this orthogonality holds for all k 6= n.

Note that Gn is the determinant of a matrix with integrals as entries. Let us apply
Andréief’s identity to Gn,

Gn−1 = det

(∫
γ

xj−1xk−1w(x)dx

)n
j,k=1

=
1

n!

∫
γn

det
[
xj−1
k

]n
j,k=1

det
[
xj−1
k

]n
j,k=1

N∏
k=1

w(xk)dxk

=
1

n!

∫
γk
|∆n(x)|2

n∏
k=1

w(xk)dxk.

Similarly, the integral expression for the determinant in Eq. (4.6) is

det


a0 · · · an
...

. . .
...

an−1 · · · a2n−1

1 · · · zn

 =
1

n!

∫
γn
|∆n(x)|2

n∏
k=1

(z − xk)w(xk)dxk. (4.7)

This can be shown as follows. Define gj(x) = xj−1 for 1 ≤ j ≤ n and gn+1(x) =
w(x)−1δ(x− z). Let hk(x) = xk−1, then

det

(∫
γ

gj(x)hk(x)w(x)dx

)n+1

j,k=1

= det


a0 · · · an
...

. . .
...

an−1 · · · a2n−1

1 · · · zn

 .
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Furthermore,

det[gj(xk)]
n+1
j,k=1 = det


1 · · · 1
...

. . .
...

xn−1
1 · · · xn−1

n

w(x1)−1δ(x1 − z) · · · w(xn)−1δ(xn − z)

 .

Expand this determinant around the last row, rewrite det[hj(xk)] = ∆(x) with the ob-
servation that ∆n(x)

∏n
k=1(z− xk) = ∆n+1(x1, . . . , xn, z), and do some relabeling of inte-

gration variables and Eq. (4.7) follows.

Corollary 4.2.1 (Heine’s formula). The orthogonal polynomials are the expectation val-
ues of the characteristic polynomial,

ϕk(x) = 〈det(x−H)〉k×k−matrix =

∫
γk
|∆(x)|2

∏n
k=1(x− xk)w(xk)dxk∫

γk
|∆(x)|2

∏n
k=1w(xk)dxk

. (4.8)

Remark 4.2.2. The matrix GN−1 is an example of a Hankel determinant, the determi-
nant of a Hankel matrix. A Hankel matrix is a matrix with the same entries on each
diagonal going from left below to right above, that is, the matrix entries only depend on
the sum of the coordinates. A Toeplitz matrix is a matrix with the same entries on each
regular diagonal. Every Toeplitz matrix is the reflection of a Hankel matrix:d−N+1 · · · d0

...
. . .

...
d0 · · · dN−1


 1

1

 =

 d0 · · · d−N+1
...

. . .
...

dN−1 · · · d0

 .

Therefore, the determinants of the Toeplitz and Hankel matrices are the same, so Eq. (4.6)
can also be written as a sum of ratios of Toeplitz determinants, instead of as a sum of
ratios of Hankel determinants. Let f(z) =

∑
i diz

i be a function with Fourier coefficients

di. Define the Toeplitz determinants Dλ,µ
N (f) and DN(f) generated by f as

Dλ,µ
N (f) := det

[
dj+λrj−k−µrk

]N
j,k=1

DN(f) := D0,0
N (f) = det[dj−k]

N
j,k=1,

where λ = (λ1, . . . , λN) and µ = (µ1, . . . , µN) are partitions of length N , and λr =
(λN , . . . , λ1) is the reverse partition. The partitions λ = (1)r and µ = (1)s, where

(1)r = (1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0︸ ︷︷ ︸
N−r times

),

can be used to write the r, s-th minor of the N × N Toeplitz matrix generated by f as

D
(1)N−r,(1)N−s

N−1 (f).
Write a(z) =

∑
i aiz

i, for the generating function of the coefficients ai. Then, Eq. (4.6)
can be written as

ϕn(x) = det


an an−1 · · · a0
...

...
. . .

...
a2n−1 a2n−2 · · · an−1

xn xn−1 · · · 1

 /

 an−1 · · · a0
...

. . .
...

a2n−1 · · · an−1

 =
n∑
j=0

xj
D

0,(1)j

n (z−na)

Dn(z−n+1a)
.

(4.9)
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This is still a monic polynomial due to the identity

D
λ,(1)N

N (a) = Dλ,0
N (za),

which holds because s(1N )(x1, . . . , xN) = eN(x1, . . . , xN) = x1 . . . xN , and will be shown
in Section 6.

We remark that Eq. (4.9) is nothing more than Heine’s formula Eq. (4.8) together
with the integral representation of Dλ,µ

N (f) Lemma 6.1.4 and the Cauchy identity for
elementary symmetric polynomials Eq. (4.16). One needs to write the characteristic
polynomial in therms of elementary symmetric polynomials. This is worked out in a
different context in Example 6.0.3.

Remark 4.2.3. Let t = (t1, t2, . . . ) be an infinite vector of coefficients, and suppose
w(x) = exp(−V (x)) where V (x) =

∑
k>0 tkx

k/k. Let us introduce the following notation,

τN(t) =

∫
HN (γ)

exp(− trV (H))dH,

where HN(γ) are the Hermitian matrices when γ = R and HN(γ) = U(N) for γ = S1.
By writing the determinant as exp(tr log(x−H)) and then Taylor expanding the log we
have∫

HN (γ)

det(x−H) exp(−V (H))dH =

∫
HN (γ)

xN exp

(
− tr

∑
k>0

(
tk −

1

xk

)
Hk

k

)
dH.

With Sato’s notation for infinite vectors

[x] :=

(
−1

x
,− 1

x2
, . . .

)
,

Heine’s formula Eq. (4.8) becomes

ϕN(x) = xN
τN(t + [x])

τN(t)
.

This is the Sato formula for writing the Baker-Akhiezer function in terms of tau functions,
see [32, Section 5.3.3].

Note that xϕk(x) is a monic polynomial of degree k+ 1, so it can be decomposed into
the basis of orthogonal polynomials, that is, there exists Q̂k,j for 0 ≤ j ≤ k+ 1 such that

xϕk(x) =
k+1∑
j=0

Q̂k,jϕj(x), (4.10)

with Q̂k,k+1 = 1. Of these Q̂k,k+1, there are only three nonzero.

Lemma 4.2.4. The ϕk satisfy a three-term recursion relation

ϕk+1(x) =
(
x− Q̂k,k

)
ϕk(x)− Q̂k,k−1ϕk−1(x),

where

Q̂k,k =
1

hk
〈ϕk(x), xϕk(x)〉, Q̂k,k−1 =

hk
hk−1

.

In particular, if the weight w(x) is an even function, Bk = 0.
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Proof. The ϕi are linearly independent and of degree i. The polynomial ϕk+1(x)−xϕk(x)
is of degree ≤ k, and can be written as

xϕk(x) = ϕk+1(x) +
k∑
j=0

Q̂k,jϕj(x).

Using the orthogonality relation 〈ϕj(x), ϕi(x)〉 = hiδij, we can now extract Q̂k,j for 1 ≤
j ≤ k as

〈xϕk(x), ϕj(x)〉 = 〈ϕk+1(x) +
k∑
i=0

Q̂k,iϕi(x), ϕj(x)〉 = 〈Q̂k,jϕj(x), pj(x)〉 = Q̂k,jhj.

Since
〈xϕk(x), xj〉 = 〈ϕk(x), xj+1〉 = 0, for k = 0, 1, . . . , n− 2,

it follows that also 0 = 〈xϕk(x), ϕj(x)〉 = Q̂k,jhj for 0 ≤ k ≤ n− 2 and therefore,

xϕk(x) = ϕk+1(x) + Q̂k,kϕk + Q̂k,k−1ϕk−1. (4.11)

Use this recursion relation to calculate Q̂k,k−1,

Q̂k,k−1hk−1 = 〈xϕk(x), ϕk−1(x)〉 = 〈ϕk(x), xϕk−1(x)〉
= 〈ϕk(x), ϕk(x) + Q̂k,k−2ϕk−2 + Q̂k,k−1ϕk−1〉 = 〈ϕk(x), ϕk(x)〉 = hn.

The result follows by rearranging terms in Eq. (4.11).

Corollary 4.2.5. The wave functions ψk(x) =
√
w(x)ϕk(x)/

√
hk satisfy the three term

recursion
xψk(x) = Qk,k+1ψk+1(x) +Qk,kψk(x) +Qk,k−1ψk−1(x),

where

Qk,j :=

√
hj
hk
Q̂k,j.

Note that Qk,k−1 =
√
hk/hk−1 = Qk−1,k so that for all k, j we have Qk,j = Qj,k.

The recursion formula allows us to express the kernel using only the top two ‘wave-
functions’ ψN−1 and ψN . This is the Christoffel-Darboux formula and is useful to describe
the large N limit of expectation values, if the asymptotic behavior of the orthogonal
polynomials is known.

Theorem 4.2.6 (Christoffel-Darboux formula). The orthogonal polynomials ψn(x) sat-
isfy

KN(x, y) =
N−1∑
k=0

ψk(x)ψk(y) =

√
hN
hN−1

ψN−1(x)ψN(y)− ψN−1(y)ψN(x)

y − x
.

Proof. Corollary 4.2.5 gives the following two equations

xψk(x)ψk(y) = Qk,k+1ψk+1(x)ψk(y) +Qk,kψk(x)ψk(y) +Qk,k−1ψk−1(x)ψk(y),

yψk(y)ψk(x) = Qk,k+1ψk+1(y)ψk(x) +Qk,kψk(y)ψk(x) +Qk,k−1ψk−1(y)ψk(x),
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which subtracted results in

(x− y)ψk(x)ψk(y) = Qk,k+1[ψk+1(x)ψk(y)− ψk+1(y)ψk(x)]

−Qk,k−1[ψk(x)ψk−1(y)− ψk(y)ψk−1(x)].

Since Qk,k−1 = Qk−1,k this results in the telescoping sum

(x− y)
N−1∑
k=0

ψk(x)ψk(y) =
N−1∑
k=0

Qk,k+1 [ψk+1(x)ψk(y)− ψk+1(y)ψk(x)]

−
N−1∑
k=0

Qk−1,k [ψk(x)ψk−1(y)− ψk(y)ψk−1(x)]

= Qk,k+1 [ψN(x)ψN−1(y)− ψN(y)ψN−1(x)]

−Q−1,0 [ψ0(x)ψ−1(y)− ψ0(y)ψ−1(x)] ,

where the last term is zero because either ψ−1(y) = 0 or ψ−1(x) = 0. Divide by (x − y)
to obtain the result.

If we interpret the set {ψk(x)}k≥1 as basis vectors of the space of polynomials in x,
Corollary 4.2.5 allows us to write the multiplication by x operator Q as the tridiagonal
matrix

Q =


Sk γ1 0 . . .
γ1 S1 γ2 . . .
0 γ2 S2 . . .
...

...
...

. . .

 where γk = Qk,k−1 and Sk = Qk,k.

The characteristic polynomial of the k× k upper left submatrix ΠkQΠk, where Πk is the
matrix

Πk =

(
Idk×k 0∞×k
0k×∞ 0∞×∞

)
,

can be calculated by expansion in the k + 1-th row. Let pk(x) = det(x− ΠkQΠk), then

pk+1(x) = (x−Qk,k)pk(x)−Q2
k,k−1pk−1(x),

which is the same recursion relation as the one for ϕn(x) of Lemma 4.2.4. Furthermore,
p0(x) = 1 and p−1(x) = 0, so that the initial conditions of pk(x) and ϕk(x) are the same.
This results in the third formula for ϕk(x):

ϕk(x) = det
k×k submatrix

(x−Q).

Suppose w(x) = e−V (x) for some polynomial potential V of degree d. Then, the
derivative ψ′k of ψk can, like Eq. (4.10), be written in terms of ψj with degree ≤ k + d

ψ′k(x) =
k+d∑
j=0

Pk,jψj(x). (4.12)

The matrix P is antisymmetric. Indeed,∫
γ

ψi(x)ψ′k(x)dx =
k+d∑
j=0

Pk,j

∫
γ

ψi(x)ψj(x)dx = Pk,i,
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then partial integration implies

Pk,i =

∫
γ

ψi(x)ψ′k(x)dx = −
∫
γ

ψ′i(x)ψk(x)dx = −Pi,k.

Since ψk(x) =
√
w(x)ϕk(x)/

√
hk, Eq. (4.12) implies

ϕ′k(x) =
∂

∂x
e

1
2
V (x)
√
hkψk(x) =

√
hke

1
2
V (x)

[
1

2
V ′ψk(x) + ψ′k(x)

]
=
√
hke

1
2
V (x)

k+d∑
j=0

(
1

2
V ′(Q) + P

)
kj

ψj(x)

=
k+d∑
j=0

(
1

2
V ′(Q) + P

)
kj

ϕj(x).

Here, we note that the matrix Q is multiplication by x. Now, ϕ′k(x) has degree k − 1, so
the matrix V ′(Q)/2 +P must be strictly lower triangular. Denote with M+,M0 and M−
the upper triangular, diagonal and lower triangular parts of M , then we have

0 =

(
1

2
V ′(Q) + P

)
+

.

Then, by antisymmetry, P− = V ′(Q)−/2, so that

P = −1

2

(
V ′(Q)+ − V

′(Q)−
)
.

4.2.1 Dyson’s theorem

Dyson’s theorem is a recursion formula to be able to calculate integrals of the form∫ [ N∏
k=1

w(xk)

][ ∏
1≤j<k≤N

|xk − xj|β
]

dxm+1 . . . dxN , (4.13)

for β = 2.
The general procedure for calculating Eq. (4.13) is as follows: Given a weight function

w(x), we construct a kernel Kβ(x, y) such that

a) Kβ(x, y) = Kβ(y, x),

b)
∫
Kβ(x, y)Kβ(y, z)dy = Kβ(x, z) + λK(x, z)−K(x, z)λ,

c) det[Kβ(xi, xj)]N ∝ |∆N(x)|β
∏N

k=1w(xk).

Then, the following theorem gives a recursion formula for calculating the integral.

Theorem 4.2.7 (Dyson, 1970). Let K(x, y) : K×K→ K be a function, with K the reals
R, complex numbers C or quaternions H, such that

K(x, y) = K(y, x),
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with K being K if K = R, the complex conjugate of K if K = C or the dual of K if
K = H. Suppose furthermore that∫

K(x, y)K(y, z)dy = K(x, z) + λK(x, z)−K(x, z)λ,

where λ ∈ H, so λ vanishes if K = R or K = C due to commutativity. Denote with
[K(xi, xj)]N the N ×N matrix with (i, j) entry K(xi, xj). Then∫

det[K(xi, xj)]
N
i,j=1dxN = (c−N + 1)det[K(xi, xj)]

N−1
i,j=1,

where c =
∫
K(x, x)dx.

Proof. The Leibniz formula for the determinant gives the following sum over all pairings

det[K(xi, xj)]
N
i,j=1 =

∑
P

σ(P )K(x1, xP1)K(x2, xP2) . . . K(xN , xPN ).

Either PN = N and the integration results in the scalar c, or PN 6= N . In the latter
case, which occurs N − 1 times, the integration reduces it to a product of K’s of length
N −1 for the permutation

(
1 ··· k ··· N−1
P1 ··· PN ··· PN−1

)
, where k is such that Pk = N (k 6= N). This

permutation has opposite sign. The terms containing λ sum to zero. Adding these two
contributions proves the theorem.

Using Lemma 4.1.3 it now follows that∫
γ

det[K(xi, xj)]
l
i,j=1dxk = (N − l + 1)det

[
K(xi, xj)

]l−1

i,j=1
,

so that

ZN,2 =

∫ [ N∏
k=1

w(xk)

]
|∆N(x)|2dx1 . . . dxN =

N∏
l=1

(N − l + 1)
N−1∏
k=0

ck = N !
N−1∏
k=0

ck. (4.14)

This is the same result as Eq. (4.3). Similarly, the n-point correlation function can be
calculated using this recursion in N − n steps.

Rn(x1, . . . , xn) =
1

ZN,2

N !

(N − n)!

∫ [ N∏
k=1

w(xk)

]
|∆N(x)|2dxn+1 . . . dxN

=
1

(N − n)!

∫
det[K(xi, xj)]

N
i,j=1dxn+1 . . . dxN

= det[K(xi, xj)]
n
i,j=1. (4.15)

In particular, the 1-point correlation function is just K(x, x).

4.3 Newton’s relations

In the following, let A be a diagonalizable N ×N matrix with eigenvalues x1, . . . , xN . By
Cayley-Hamilton, the matrix A is a solution of its own characteristic polynomial P (λ),

P (λ) = det(λ− A) = λN det
(
1 + (−λ−1)A

)
= λN

N∑
k=0

ek(x)zk =
N∑
n=0

(−1)N−neN−n(x)λn,
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where z = −1/λ and k = N − n. The coefficients ek(x) are defined by this equation,
and do depend on the eigenvalues x. This dependence is denoted by ek(x). We can
relate these coefficients ek(x) to the traces of A as follows. The Taylor expansion of the
logarithm around 1 is

log(1− x) = −
∑
k>0

1

k
xk,

from which it follows that

det(λ− A) =
N∏
i=1

(λ− λi) = λN
N∏
i=1

(
1− λi

λ

)
= λN exp

(
−
∑
k>0

pk(x)

k
λ−k

)
,

where pk(x) =
∑N

i=1 x
k
i = tr

(
Ak
)
. With z = −1/λ we get

E(x; z) :=
N∏
j=1

(1 + xjz) =
N∑
k=0

ek(x)zk = exp

(
∞∑
k=1

(−1)k+1pk(x)

k
zk

)
. (4.16)

Here, E(x; z) is called the generating function for ek(x). This equation is det(λ− A) =
exp tr log(λ− A) rewritten in a slightly different form. One can now derive Eq. (4.16)
with respect to z and set z = 0 to obtain for example

e0(x) = 1,

e1(x) = p1(x),

2e2(x) = p1(x)2 − p2(x),

. . .

These equations can then also be used to write pk(x) in terms of ek(x). In general k this
can be written as (see for example (5.15.1) in Haake [41]),

ek(x) = (−1)k
∑

m1+2m2+···+kmk=k
m1≥0,...,mk≥0

k∏
l=1

(−pk(x))ml

ml!lml
, (4.17a)

pk(x) = (−1)kk
∑

m1+2m2+···+kmk=k
m1≥0,...,mk≥0

(−1)k(m1 + · · ·+mk − 1)!
k∏
l=1

(−el(x))ml

ml!
. (4.17b)

The same relations hold for general variables x, not necessarily eigenvalues of some
matrix A. Furthermore, from the identity

∏N
j=1(1 + xjz) =

∑N
k=0 ek(x)zk it can be seen

that
ek(x) =

∑
1≤j1<j2<···<jk≤N

xj1 · · ·xjk .

The polynomials ek(x) are called the elementary symmetric polynomials. The pk(x) are
the power sum symmetric polynomials. Finally, we have the complete homogeneous sym-
metric polynomials

hm(x1, . . . , xN) :=
∑

j1+j2+···+jN=m
ji≥0

xj11 · · ·x
jN
N .
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For these polynomials, we have a similar equation as Eq. (4.16),

H(x; z) =
∞∏
j=1

1

1− xjz
=
∞∑
k=0

hk(x)zk = exp

(
∞∑
k=1

pk(x)

k
zk

)
. (4.18)

A good reference for the theory of symmetric polynomials is Macdonald [42].

4.4 Correlation functions

Random Matrix Theory is a statistical theory, so we must calculate expectation values
or ensemble averages 〈· · · 〉,

〈f〉 :=

∫
f(x1, . . . , xN)PN(x1, . . . , xN)dx1 . . . dxN .

We assume that PN(x1, . . . , xN) is such that 〈1〉 = 1, and that PN(x1, . . . , xN) is a
symmetric function, that is, invariant under change of ordering of the x1, . . . , xN (the
remaining Weyl symmetry). This section goes as follows. We start by giving definitions
of some important expectation values, and present a relation between them. We follow
Mehta [9] in this section, but the reader may also look in the appendix of Nishigaki [43],
where they use these expressions to give analytical results for level spacing distributions
of orthogonal, unitary and symplectic ensembles with an extra potential which introduces
multifractality. Then, we continue by presenting the technique of orthogonal polynomials,
which will allow us to calculate the n-point correlation functions in the specific case of
the Gaussian Unitary Ensemble. In the third subsection, we will combine the knowledge
of the first two subsections to calculate other distributions for the GUE. Finally, we will
consider the circular and the multifractal ensemble.

4.4.1 The distributions and their relations

The goal of this section is to present some eigenvalue distributions. One of the most
important ones is the n-point correlation.

Definition 4.4.1 (n-point correlation function). The n-point correlation function is the
probability density function of finding a level around the points x1, . . . , xn with the other
levels unspecified and given by [44]

Rn(x1, . . . , xn) :=
N !

(N − n)!

∫
PN(x1, . . . , xN)dxn+1 . . . dxN .

In particular R1(x) is the level density.

Because we have assumed that PN(x1, . . . , xN) is symmetric under change of ordering
of the xi, it can be seen that Rn(x1, . . . , xn) = 〈%(x1) . . . %(xn)〉. Here %(x) =

∑N
i=1 δ(x−

xi). Furthermore, the large N limit of R1(x) = ρ(x) = 〈%(x)〉 for the Gaussian ensembles
is given by the Wigner semicircle law. The density %(x) is normalized toN ,

∫
%(x)dx = N .

For uncorrelated systems, one would find R2(x1, x2) = R1(x1)R1(x2). The clustering
of the levels breaks this relation. Then n-level cluster function attempts to measure this.
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Definition 4.4.2 (n-level cluster function). The n-level cluster function describes the
grouping of n levels in subgroups, which we will call clusters. It is defined as [9, Section
6.1.1],

Tn(x1, . . . , xn) :=
∑
G

(−1)n−|G|(|G| − 1)!

|G|∏
j=1

R|Gj |(xk, with k in Gj). (4.19)

Here,
∑

G is the sum over partitionsG of the levels (1, 2, . . . , n) into |G| sets (G1, . . . , G|G|).
An example to make the notation clear; let Gj = {1, 3, 4}, then R|Gj |(xk, with k in Gj) =
R3(x1, x3, x4).

The formula Eq. (4.19) is a Newton’s identity (Eq. (4.17b)) like formula. In particular,
T1(x1) = R1(x1) and

T2(x1, x2) = −R2(x1, x2) +R1(x1)R1(x2). (4.20)

With the observations made before,

RK(x1, x2) :=
R2(x1, x2)

ρ(x1)ρ(x2)
= 1− T2(x1, x2)

ρ(x1)ρ(x2)
.

This quantity is what Kravtsov calls the two-level correlation function [45, Section X].
Consider some average of RK(x1, x2),∫

dx2ρ(x1)ρ(x2)RK(x1, x2) =

∫
dx2〈%(x1)%(x2)〉 = 〈%(x1)

∫
dx2%(x2)〉

= N〈%(x1)〉 = NR1(x1),

due to the normalization of %(x1). Therefore, we obtain the normalization sum rule,

α :=

∫
dx2T2(x1, x2) = −

∫
dx2ρ(x1)ρ(x2)(RK(x1, x2)− 1) = 0.

Due to non-commuting limit, α may not be 0 in general in the limit N → ∞. This is
called the deficiency of the normalization sum rule.

Kravtsov also defines the following.

Definition 4.4.3 (Level number variance). The level number variance is the variance in
the level numbers n,

Σ(n̄, x) = 〈n2
x〉 − n̄2

x,

where nx is the fluctuating number of levels in an interval δx of length s around some
base point x, δx = [x− s/2, x+ s/2], and n̄x is the average number of levels of an interval
of length s. The length s is determined by n̄x by this requirement, so actually we would
write δx = δx(n̄).

We can write nx as6

nx =

∫
δx

%(x1)dx1,

6Kravtsov [45] writes ρ here instead of %, but I believe that is a mistake.
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so that n̄x is given by

n̄x = 〈nx〉 =

∫
δx

〈%(x1)〉dx1 =

∫
R1(x1)χδx(x1)dx1.

Here, we have introduced the characteristic function of an interval,

χI(x) =

{
1 if x ∈ I,
0 otherwise.

It can now be seen that [45, Section X],

Σ(n̄, x) =

∫
δx

∫
δx

ρ(x1)ρ(x2)[RK(x1, x2)− 1]dx1dx2 =

∫
δx

∫
δx

T2(x1, x2)dx1dx2. (4.21)

In the following, we will drop the explicit base point dependence in our notation. This
is because there usually is a natural base point to pick, such as 0, or we expect that in
the large N limit, these quantities do not depend on the base point anymore. We will
therefore write Σ(n̄) for Σ(n̄, x) and n for nx.

An important quantity to characterize the degree of level repulsion is how much this
variance changes if we pack more levels together.

Definition 4.4.4 (Level compressibility). The level compressibility is the derivative of
the level number variance with respect to n̄.

χ(n̄) :=
dΣ(n̄)

dn̄
.

In the small n̄ limit, we have that χ ∼ (1−d2/d)/2, where d2 is the second multifractal
dimension and d is the dimension [46].

Typically, one wants to take expectation values of the correlation of cluster functions,
that is, integrate over x1, . . . , xn over some interval I. In general, one is interested in the
quantities

r0,I := 1, (4.22)

rn,I :=

∫
Rn(x1, . . . , xn)

n∏
i=1

(χI(xi)dxi), 1 ≤ n ≤ N, (4.23)

tn,I :=

∫
Tn(x1, . . . , xn)

n∏
i=1

(χI(xi)dxi), 1 ≤ n ≤ N (4.24)

where

χI(x) =

{
1 if x ∈ I
0 else

is the characteristic function for the interval I. For n > N , we set both rn,I = tn,I = 0.
Let us remark that χI is just a projection, as χ2

I = χI .
Using the new notation, we see that n̄ = r1,δx and furthermore, looking at the equation

for Σ(n̄) in Eq. (4.21),
Σ(n̄) = t2,δx(n̄).
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It is useful to define a generating function for the quantities tn and rn,

R(z, I) :=
∞∑
n=0

(−1)n
rn,I
n!
zn,

T (z, I) := −
∞∑
n=1

tn,I
n!
zn.

As for n > N , rn,I = tn,I = 0, this is in fact a finite sum. These generating functions are
related.

Lemma 4.4.5.
R(z, I) = exp(T (z, I)).

Proof. For convenience, drop the I labels everywhere. Fill in Eq. (4.19) for Tn(x1, . . . , xn)
in the equation for tn, Eq. (4.24),

tn =
∑
G

(−1)n−m(m− 1)!

∫ m∏
j=1

R|Gj |(xk, with k in Gj)
n∏
i=1

(χI(xi)dxi)

=
∑
G

(−1)n−m(m− 1)!
m∏
j=1

r|Gj |.

Observe that this formula does not depend anymore on the precise division over the sets
Gi, but only on the sizes `i := |Gi|, with multiplicity n!/|G1|! . . . |Gm|! for the number of
ways of subdividing the elements into sets of lengths |Gi|. We add a factor of 1/m! to
include the freedom of changing the ordering of the sets Gi. This results in

tn =
∑
`

(−1)n−m
(m− 1)!n!

m!

m∏
j=1

r`j
`j!
,

where the sum is over all partitions ` of n such that n = `1 + · · ·+ `m.

T (z) = −
∞∑
n=1

tn
n!
zn

= −
∞∑
n=1

∑
`(n)

(−1)n−m

m

m∏
j=1

r`j
`j!
z`j

= −
∞∑

m,`1,...,`m=1

(−1)n−m

m

m∏
j=1

r`j
`j
z`j .

In the last step, we combined the two summations. We now have

T (z) =
∞∑
m=1

(−1)m−1

m

(
∞∑
n=1

rn
n!

(−z)n
)m

= logR(z).

For more info, see [9, A.7.11].

The level spacings are what characterize Wigner-Dyson statistics. A key result, the
Wigner surmise, gives a clear distinction between such statistics and Poisson statistics.
A step towards obtaining this result is the general question of what the probability is of
finding m levels in an interval I and the other levels outside.
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Definition 4.4.6 (Spacing function). The spacing function is the probability function
of finding the first n levels inside an interval I and the other N − n outside I [9, Section
5.9],

E(n, I) :=

(
N

n

)∫
I

dx1 . . . dxn

∫
Ic

dxn+1 . . . dxNPN(x1, . . . , xN),

where Ic is the complement of I.

It can also be written as

E(n, I) =

(
N

n

)∫
dx1 . . . dxN

n∏
i=1

χI(xi)
N∏

j=n+1

(1− χI(xj))PN(x1, . . . , xN).

This can be expressed in terms of the generating functions R(z, I) (or T (z, I)).

Lemma 4.4.7.

E(n; I) =
(−1)n

n!

(
d

dz

)n
R(z, I)|z=1.

In particular E(0; I) = R(1, I).

Proof. Let us expand the product
∏N

j=n+1(1− χI(xj)) and relabel

E(n; I) =
1

n!

∑
k=n

N !

(N − n)!

(
N − n
k − n

)
(−1)k−n

∫
dx1 . . . dxNPN(x1, . . . , xN)

k∏
i=1

χI(xi)

=
1

n!

∑
k=n

(−1)k−n

(k − n)!

N !

(N − k)!

∫
dxk+1 . . . dxNRk(x1, . . . , xk)

k∏
i=1

χI(xi)dxi

=
(−1)n

n!

N∑
k=n

(−1)k

(k − n)!
rk,I

=
(−1)n

n!

(
d

dz

)n∑
k=n

(−1)k

k!
rk,Iz

k|z=1

=
(−1)n

n!

(
d

dz

)n
R(z, I)|z=1.

These calculations were also given by Mehta [9, A.7.17].

For these spacings, we are generally not interested in the particular starting point
of the interval, but only care about the length of the interval I. We will just pick the
interval I to be centered around 0 and write E(n; s) = E(n; [−s/2, s/2]).

Definition 4.4.8 (Level spacing distribution). The level spacing distribution p(n; s) is
the probability density function that the distance between an arbitrary level Ei and the
n+ 1-th successive level Ei+n+1 is s. In other words, p(n; s)ds is the probability that the
distance between Ei and Ei+n+1 lies between s and ds.

Let us now introduce F̃ (n; s), which we define to be the probability that if we choose
a level at random (with uniform probability 1/N), the interval starting at this level with
a length of s contains exactly n levels, not counting the level we selected. Then, p(0; s)ds
is the probability that the interval of length s contains no levels, minus the probability
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that s+ ds still contains no levels, as in this case we must conclude that ds also contains
no levels. In other words, p(0; s)ds = F (0; s)− F (0; s+ ds), or

p(0; s) = − d

ds
F̃ (0; s).

Similarly, we get F̃ (0; s) as a derivative of E(0; s) by fixing the starting point,

F̃ (n; s) = − d

ds
E(0; s).

More generally,

p(n; s) =
d2

ds2

n∑
j=0

(n− j + 1)E(j; s).

It is clear that R(z, I) is an important quantity to calculate. If we know how R(z, I)
looks like, we are able to calculate all other distributions defined in this section. Orthog-
onal polynomials allows us to do that for the Gaussian Unitary Ensemble.

4.4.2 The Gaussian Unitary case

In the Gaussian Unitary case, we have now found (Eq. (4.15))

Rn(x1, . . . , xn) = det[K(xi, xj)]n.

This implies that

Tn(x1, . . . , xn) = K(x1, x2)K(x2, x3) . . . K(xN , x1) + . . . ,

where the dots indicate similar terms for other orderings of xi. For example, we have

T1(x1) = K(x1, x1),

T2(x1, x2) = K(x1, x2)K(x2, x1),

T3(x1, x2, x3) = K(x1, x2)K(x2, x3)K(x3, x1) +K(x1, x3)K(x3, x2)K(x2, x1),

. . .

Hence, if we think of K(x1, x2) as an arrow from x1 to x2, Tn(x1, . . . , xn) expresses all
possible loops one can draw through the points xi, i = 1, . . . , n, where the pen does not
leave the paper and each point is visited once. Then,

tn,I = (n− 1)!

∫
K(x1, x2)χI(x2)K(x2, x3)χI(x3) . . . K(xN , x1)χI(x1)dx1 . . . dxN

= (n− 1)! tr((KΠI)
n).

Here, we regard K as an integral operator, where ΠI is the projection operator on the
interval I,

ΠI :=

∫
I

dx|x〉〈x|,

so that 〈x|ΠI |y〉 = δ(x − y)χI(x). The sum T (z, I) is then a Taylor expansion for a
logarithm and

T (z, I) = tr log(1− zKΠI),
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so that
R(z, I) = exp(tr log(1− zKΠI)) = det(1− zKΠI).

This is Equation A7a from Nishigaki [43], which is known as the Fredholm Determinant.
If one would know the eigenvalues λi of KΠI , this determinant could be evaluated as∏

i(1− zλi). Eigenvalues are numbers, such that the following holds,

λiψi(x) =

∫
I

K(x, y)ψi(y)dy.

We refer to Mehta [9, Chapter 18] for a calculation of the asymptotics of R(0, I) using
Toeplitz matrices and the Szegö limit theorem.

4.4.3 Circular ensemble

For the Circular Unitary Ensemble, we can also use the method of orthogonal polynomials,
and pick the polynomials ϕj(x) = xj. Then, Eq. (4.2) is satisfied with hi = 2π:∫

ϕk(x)ϕj(x)w(x)dx =

∫ 2π

0

ei(k−j)θdθ = 2πδkj

Now, use the results from Section 4.4 with

K2(eiθi , eiθj) =
1

2π

N−1∑
k=0

eik(θj−θi) =: SN(θj − θi).

Therefore, the n-level correlation function is

Rn(eiθ1 , . . . , eiθn) = det[SN(θj − θi)]n.

We will also write Rn(θ1, . . . , θn) to mean Rn(eiθ1 , . . . , eiθn). For example, the level density
(1-level correlation) and 2-level correlation function are

R1(θ) = SN(0) =
N

2π
,

R2(θ, ϕ) = (SN(0))2 − (SN(θ − ϕ))2.

The limit as N →∞ is denoted by Yn

Yn(y1, . . . , yn) = lim
N→∞

αnTn(x1, . . . , xn),

where yi are energy levels in units of mean level spacing α, yi = xi/α.
Using Eq. (4.20), it follows that the two-level cluster function for the Circular Unitary

Ensemble is

T2(θ − ϕ) = (SN(ϕ− θ))2 =

{
sin[N(θ − ϕ)/2]

2π sin[(θ − ϕ)/2]

}2

.

With mean level spacing α = 2π/N , we get

Y2(ξ, η) = lim
N→∞

α2T2(θ, ϕ) =

(
sin(π|ξ − η|)
π|ξ − η|

)2

.
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4.5 The Gaussian Unitary Ensemble

In this section, the orthogonal polynomial technique is applied to the Gaussian Unitary
Ensemble. For the Gaussian Unitary Ensemble, the orthogonal polynomials are the
Hermite polynomials

ϕj(x) = ϕj(x) = 2−jHj(x),

where the 2−j prefactor is to ensure that ϕi(x) are monic. The Hermite polynomials
satisfy

∫
Hj(x)Hk(x) exp(−x2)dx =

√
π2jj!δjk, so when taking the prefactor into account,

cj =
√
π2−jj!. In particular, this allows us to finally calculate the normalization constant

ZN,β in Theorem 2.4.5, at least for β = 2, using Eq. (4.14),

ZN,β = N !
N−1∏
j=0

√
π2jj! = πN/22

∑N−1
j=0 jN !

N∏
j=1

(j − 1)!

= (2π)N/22−N/22N(N−1)/2

N∏
j=1

jΓ(j) = (2π)N/2β−N/2+βN(N−1)/4

N∏
j=1

Γ(1 + j). (4.25)

Example 4.5.1 (Hermite polynomials). The Hermite polynomials are supposed to be
the orthogonal polynomials for the weight w(x) = exp(−x2), with hi =

√
π2−jj! and

qi = 2i, hence hn/hn−1 = n/2. The weight w(x) is an even function, so Bn = 0. The
recursion formula is

Hn+1(x) = 2xHn(x)− 2nHn−1(x),

which is indeed the recursion formula for the Hermite polynomials. 4

Example 4.5.2 (More about Hermite polynomials). Hermite polynomials are also eigen-
vectors of the differential equation

0 =
(
e−x

2

ϕ′
)′

+ 2ne−x
2

ϕ = e−x
2

(ϕ′′ − 2xϕ′ + 2nϕ) ,

which is the Sturm-Liouville eigenvalue problem,

Lϕ := − 1

w(x)

[
d

dx

(
p(x)

dϕ

dx

)
+ q(x)ϕ

]
= λϕ,

for w(x) = p(x) = e−x
2
, λ = 2n and q(x) = 0. Solutions of such a differential equation

with different eigenvalues are always orthogonal. This follows from the self-adjointness
of L, which can be seen by partial integrating twice,

〈Lϕ, ψ〉 = −
∫

1

w(x)
(p(x)ϕ′(x))′ψ(x)w(x)dx−

∫
1

w(x)
q(x)ϕ(x)ψ(x)w(x)dx

=

∫
p(x)ϕ′(x)ψ′(x)dx−

∫
q(x)ϕ(x)ψ(x)dx

=

∫
ϕ(x)(p(x)ψ′(x))′dx−

∫
q(x)ϕ(x)ψ(x)dx = 〈ϕ,Lψ〉.

The kernel of this differential operator is the function G(x, y), which satisfies LG(x, y) =
δ(x− y) and can be written in terms of the eigenbasis as

G(x, y) =
∞∑
n=0

Hn(x)Hn(y)

2nhn
,

where hn =
√
π2−nn! ensures the Hn(x) are properly normalized. 4
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Figure 4: Level spacing distributions for (blue) uncorrelated levels (Poisson), (red) uni-
formly distributed levels and (purple) eigenvalue distribution of the 2 × 2 Gaussian Or-
thogonal Ensemble. Unlike the Poisson distribution, which is peaked at 0, the probability
density of the GOE eigenvalue distribution is zero at s = 0.

4.6 Level spacing distribution

Due to the term |xk − xj|, the probability for a random matrix to have two eigenvalues
close to one another goes to zero. This is called level repulsion and can be seen in Figure 4.

Let E1, E2, . . . be the ordered (energy) levels of a matrix in the ensemble, with spacings
Si = Ei+1−Ei and mean spacing D := 〈Si〉. Let si := Si/D be the relative spacing. The
probability density function p(s) for the si is called the level spacing distribution. We will
consider the three examples depicted in Figure 4.

Uniform distribution The spacing is always equal to the mean spacing, that is, p(s) =
δ(s− 1), where δ is the Dirac delta.

Uncorrelated energy levels Suppose the energy levels Ei are not correlated. Then,
the probability that Ei lies in the interval (E,E + dE) is ρdE, with ρ = 1

D
such that the

mean spacing is D. Divide the interval (E,E + S) into m sub-intervals [9, Chapter 1.4],
then the probability that each of those m sub-intervals of length S/m does not contain a
level is approximately 1− ρS/m. In the limit m→∞,

lim
m→∞

(
1− ρ S

m

)m
= e−ρS,

is the probability that the interval (E,E + S) does not contain a level. The probability
that (E,E + S) does not contain a level, and (E + S,E + S + dS) does, is hence given
by e−ρSρdS. With s = S/D, this results in p(s)ds = e−sds, the Poisson distribution.

GOE with N = 2. The case β = 1 and N = 2 is simple enough for us to calculate,
while showing the general principle of level repulsion. This result is called the Wigner’s
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(a) (b)

Figure 5: Example of level spacings of (a) a diagonal matrix with Gaussian distributed
entries and (b) a matrix drawn from the GUE.

surmise. Using Eq. (2.27), the PDF for S is given by

p(S) =

∫
P (x1, x2)δ(S − |x2 − x1|)dx1dx2

=

(
2π

Γ(2)

Γ(3/2)

)−1 ∫
exp

(
−1

2
(x2

1 + x2
2)

)
|x2 − x1|δ(S − |x2 − x1|)dx1dx2

=
2

4
√
π

∫
x2≥x1

S exp

(
−S

2

2
− x1x2

)
δ(S − (x2 − x1))dx1dx2

=
S

2
√
π

∫
exp

(
−S

2

2
− x2

1 − x1S

)
dx1 =

S

2
√
π

√
π exp

(
S2

4
− S2

2

)
=
S

2
e−

S2

4 .

We have filled in x2 = S + x1 in this calculation. The current mean value of S is

D = 〈S〉 =

∫ ∞
0

S · S
2
e−

S2

4 dS =

∫ ∞
0

e−
S2

4 dS =
1

2

√
4π =

√
π,

hence S =
√
πs and dS =

√
πds. In the second step, we used integration by parts twice.

The Wigner’s surmise is then

p(s) =
πs

2
e−

πs2

4 . (4.26)

4.6.1 Level number variance

The level number variance, Eq. (4.21), characterizes the difference between Poisson and
the more evenly spread random matrix statistics, such as the Riemann Zeta zeroes and
level statistics of the Erbium atom and Sinai Billiard in Figure 2. In the latter, one finds
that the levels lie more closely to the uniform average, so Σ(n̄)� 1.

Consider Eq. (4.21) and take the limit N → ∞. Then, we may assume that the
level density is homogeneous ρ(x) = ρ0 and hence RN(y, z) = R∞(z − y). Note that δx
contains on average ρ0δx levels, so δx = n̄/ρ0. Let s := (z − y)ρ0/2 and integrate over y
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at fixed s;

Σ(n̄) =

∫
δx

ρ0dy

∫
δx

ρ0[R∞(z − y)− 1]dz =

∫ n̄

−n̄
(n̄− |s|)[R∞(s)− 1]ds.

The term n̄ − |s| is the length of the interval over which y is integrated. The level
compressibility is given by

χ(n̄) =

∫ n̄

−n̄
[R∞(s)− 1]ds.

There is no contribution due to the factors of n̄ in the integration bounds because for s =
±n̄, (n̄−|s|)(R∞(s)−1) = 0. If the normalization sum rule holds, then limn̄→∞ χ(n̄) = 0
and conversely if limn̄→∞ χ(n̄) = 0, the limits N → ∞ and n̄ → ∞ commute and the
normalization sum rule holds. This might not always be the case. This is called an
anomaly and it is just a deficiency of the normalization sum rule,∫ ∞

−∞
[R∞(s)− 1]ds = α, α 6= 0. (4.27)

In the absence of the anomaly, the level number variance for the Gaussian ensembles
is [45, Section X]

Σ(n̄) =
2

π2β
log n̄+O(1), (4.28)

which is a smaller variance than in the Poisson case,

Σ(n̄) = n̄. (4.29)
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5 Multifractality

Random Matrix Theory has historically been a study of the energy level statistics of
random Hamiltonians. The modelH0+tV from Section 3.3, which describes the transition
from Poisson statistics to Wigner-Dyson (Gaussian) statistics, raises the question what
happens with the eigenvectors at this transition. Because H0 is assumed to be diagonal,
supposing all diagonal entries (the eigenvalues) are distinct, then the eigenvectors are the
basis vectors of CN . These eigenvectors are localized. Furthermore, eigenvectors of the
Gaussian Unitary Ensemble, due to rotational invariance, are, on average, delocalized.
This transition from Poisson to Wigner-Dyson statistics is a localization to delocalization
transition. How can we describe the intermediate states?

An important example of a localized to delocalized transition is the Anderson transi-
tion, which occurs in systems of dimension 1 or 2. This is the transition from a metallic
phase to an insulating phase due to either an increase in disorder or a decrease of the
energy. In the metallic phase the eigenstates are delocalized, and the eigenvalues satisfy
Wigner-Dyson statistics. We say that this is the ‘chaotic’ phase, not to be confused with
‘disorder’. On the other hand, in the insulating phase, the eigenstates are exponentially
localized, and the eigenvalues are uncorrelated, hence have Poisson statistics. We say
that this is the ‘integrable’ phase. For sufficiently high disorder, therefore, metallic states
become localized. This is Anderson localization, the absence of diffusion of wave states
because of a sufficiently disordered medium [47].

The phase transition occurs at the critical energy Ec, called the mobility edge. At this
critical energy, the generalized diffusion propagator D(q1, q2;ω) changes from Goldstone
form

D(k, ω) =
2πρ(E)

Dk2 − iω
,

with D the diffusion constant, σ = e2ρD, in the metallic phase, to a massive form in the
insulating phase [8],

D(q1, q2;ω) ≈ 2πρ(E)

−iω
exp(−|q1 − q2|/ξ).

The generalized diffusion propagator is defined as

D(q1, q2;ω) = 〈GR(q1, q2;E + ω/2)GA(q2, q1;E − ω/2)〉, (5.1)

where 〈·〉 is the disorder average, that is the ensemble average.
Furthermore, observables such as the localization length ξ in the insulating phase

(E < Ec), or the conductivity σ in the metallic phase (E > Ec), satisfy a certain scaling
relation for energies close to the critical energy,

ξ ∝ (Ec − E)−ν , σ ∝ (E − Ec)τ .

The critical exponents ν and τ satisfy τ = ν(d − 2) [8, Section II.A], first derived by
Wegner [48]. A scaling relation also holds for moments of eigenvector components. This
leads to the concept of multifractality of wave functions. For this we introduce generalized
dimensions.
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Figure 6: The Sierpinski triangle, obtained recursively by cutting out the center triangle,
and repeating this process for the remaining three triangles. It has Hausdorff dimension
log 3/ log 2.

5.1 Generalized dimensions

There are many measures of fractal dimensions of a fractal embedded in a d-dimensional
space. In this section, we will consider some of these measures. These divide the space
into d-dimensional cubes of size bd first. Assume these cubes are labeled by some index j.
Let B(b) be the number of boxes which contain points of the fractal. For a n-dimensional
plane embedded in this d-dimensional space, the number of boxes needed is b−n. In
general, the box-counting dimension is roughly speaking the exponent D, defined by

D = − lim
b→0

logB(b)

log b
. (5.2)

In the small b limit we therefore have B(b) ∼ b−D. Let pj be the fraction of points present
in the j-th cube. This can be calculated as follows. Approximate the fractal with a finite
set of points M and let Mj be the number of points of the fractal in the j-th cube. Then
pj = limM→∞Mj/M . We note that

lim
q→0

pqj =

{
1 if the j-th cube contains points of the fractal,

0 if the j-th cube does not contain points of the fractal,

so that the box counting dimension can also be written as

D = − lim
q→0

lim
b→0

1

1− q

log
(∑

j p
q
i

)
log b

.

For most fractals, the box-counting dimension is equal to the Hausdorff dimension, defined
as follows for a self similar object. Let V and L be two parameters describing the object,
where V describes the number of lattice sites and L the scale. Then, the Hausdorff
dimension is dH = log V/ logL. For example, consider the Sierpinski triangle show in
Figure 6. When multiplying the system size L with 2, the total volume increases by a
factor of 3, since the original triangle appears three times in the rescaled version. The
Hausdorff dimension is log 3/ log 2.

Other than the box-counting dimension and the Hausdorff dimension, there are two
other generalized dimensions, namely the information dimension and correlation dimen-
sion. The information dimension σ is the critical exponent in the scaling of the Shannon
entropy,

σ = − lim
b→0

−
∑

j pj log pj

log b
.
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Finally, the correlation dimension ν is defined by

ν = lim
b→0

lim
N→∞

logC(b)

log b
, (5.3)

where C(b) counts the number of pairs of points on the fractal with distance less than b,

C(b) =
1

M2

∑
k 6=i

θ(b− |xk − xi|),

where the sum is over all points of the fractal, θ is the Heavyside function and xk is
the position of point k. Up to corrections of O(1), we can assume that C(b) counts the
number of pairs of points that belong to the same box,

C(b) =
∑
j

p2
j .

Hentschell and Procaccia [49] showed that there are in fact an infinite number of general-
ized dimensions Dq that characterize fractals. Furthermore, they showed that the three
dimensions D, σ and ν are special cases of the Dq, namely

D = lim
q→0

Dq,

σ = lim
q→1

Dq,

ν = D2.

The generalized dimensions are defined via a generalization of the Shannon entropy,
the Rényi entropy [50], which is defined as

SR(q) =
1

1− q
log

(∑
j

pqj

)
, (5.4)

where 0 < q < ∞ and pj is the probability of state j occurring. L’Hôpital’s rule shows
that it can be extended to q = 1, where it is the Shannon entropy

lim
q→1

SR(q) = −
∑
j

pj log pj.

When pj is the probability that a microstate labeled by j occurs in a thermodynamic
system, this is also called the Gibbs entropy, assuming kB = 1. The limiting cases
limq→0 SR(q) and limq→∞ SR(q) are called the max-entropy and min-entropy, for the rea-
son shown later in Proposition 5.1.1. For quantum systems, a natural choice is pj = |ψj|2q,
where ψj is the j-th component of some distinguished state ψ. Another example of pj is
the number of times Mi a time series visits the i-th box, as a fraction of the length of the
time series M and defining pj = limN→∞Mi/M .

The generalized dimensions are now defined by [49]

Dq = − lim
b→0

SR(q)

log b
.
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It can indeed be seen that D = limq→0Dq and that σ = limq→1Dq. Alternatively, since
b ∝ L−1, one could keep the box size fixed b and let the system size L go to ∞,

Dq = lim
L→∞

SR(q)

logL
. (5.5)

Denote with Pq the sum of probability moments

Pq =
∑
j

pqj ,

then the generalized dimensions discussed in Section 5.1 are expressed asDq = limb→0[log(Pq)/((q−
1) log b)].

We will now look at some properties of these generalized dimensions. Firstly, there
are bounds on the values Dq can take.

Proposition 5.1.1. The fractal dimensions are decreasing,

Dq ≥ Dq′ , for q < q′.

Proof. Let q < q′, ‖ · ‖q be the q-norm, then we have the following bound on a vector
p ∈ Cn,

‖p‖q
′

q′ ≤ N1−q′/q‖p‖qq.

If p ∝ (1, 1, . . . , 1) this inequality becomes an equality, and otherwise the inequality is
strict. The norm inequality can be shown using Hölder’s inequality

‖fg‖1 ≤ ‖f‖r/(r−1)‖g‖r,

with f = 1, r = q/q′, and g with components gj = pq
′

j , 1 ≤ j ≤ N . Furthermore, if q′ > q,

1

q′ − 1
<

1

q − 1
.

These two inequalities can be combined to give the inequality

1

q′ − 1
log ‖p‖q

′

q′ ≤
1

q − 1
log ‖p‖qq,

from which the result follows.

Corollary 5.1.2. The generalized dimensions Dq are bounded between D0 and D∞.

Remark 5.1.3. If one looks at the proof of Proposition 5.1.1, there are two important
cases where theDq are not all different, namely the homogeneous case p = (N−1, N−1, . . . , N−1)
and the fully localized case p = (0, . . . , 0, 1, 0, . . . , 0), as in the latter case ‖p‖q = 1 for all
q, hence log ‖p‖qq = 0 for all q. In the former, Dq = d for all q, while in the latter Dq = 0
for all q.

In other cases, there may be an infinite set of generalized dimensions. This is called
multifractality.



5.1 Generalized dimensions 72

Let us give an interpretation of Dq for integer q > 2. As in Eq. (5.3), the integer gen-
eralized dimensions can also be written as a scaling law on some correlation function [49].
Define the higher order correlation functions Cn(l) by

Cn(l) = lim
M→∞

1

Mn
[Number of n-tuples of points (i1, . . . , in) whose pairwise distances

|xiα − xiβ | are less than l for all α, β. ]

A more geometric interpretation of Dq is found using the singularity spectrum, follow-
ing Halsey et al. [51]. For this, we look at the scaling relation of each box individually.
Let indices αi be the scaling exponent of the i-th box,

pqi ∼ bαiq.

Halsey et al. [51] suggest that the number of times αi takes a value between α and α+dα
is of the form

b−f(α)dα, (5.6)

so that Pq becomes

Pq =

∫
bqα−f(α)dα.

In the small b limit, one can do a saddle point approximation and obtain

Pq ∝ bqα̃−f(α̃), (5.7)

where α̃ is a minimum of qα− f(α), hence α̃ is a solution of q = f ′(α̃). From Eq. (5.4),
it follows that (q − 1)Dq = qα̃− f(α̃). This is a Legendre transformation.

The box counting dimension Eq. (5.2) of the set of boxes i which have equal αi,
Eq. (5.6), is given by

D = − lim
b→0

log
(
b−f(α) dα

)
log b

= f(α),

which gives f(α) the interpretation of the box counting dimension of the set i, where pi
scales as bα. Since the box counting dimension usually agrees with the Hausdorff dimen-
sion, also called just the fractal dimension, in some papers, for example [8, Section C2],
this interpretation is found with ‘box counting dimension’ replaced by ‘fractal dimension’
or ‘Hausdorff dimension’.

5.1.1 Inverse participation ratios

Let us now turn to the quantum random matrix case. We specialize to pj = |ψj|2 for
some eigenstate ψj with energy Ej, and add an ensemble average in the definitions of
fractal dimensions. To make the dependence on Ej explicit, we write Pn,i instead of Pn.
The Rényi entropy becomes

SR(n) =
1

1− n
log

(∑
j

|ψi,j|2n
)
.

Let us also take the continuous limit and replace the sum over j by an integral. Then,
we can write

SR(n) =
1

1− n
log(Pn,i),
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where

Pn,i =

∫
ddq|ψi(q)|2n = ‖ψi‖2n

L2n ,

where ‖·‖Lp is the p-norm on the Lebesgue space Lp. The quantity Pn,i is called the Inverse
Participation Ratio (IPR). Usually, interesting phenomena will only occur if disorder is
added. One would then take a disorder average 〈·〉 of these quantities, and look at
eigenstates with a certain (critical) energy,

Fn(E) := 〈
∑
i

Pn,iδ(Ei − E)〉 =

∫
ddq

∑
i

〈|ψi(q)|2nδ(Ei − E)〉.

Under the assumption that the ensemble average, also called the disorder average, kills
the q dependence of 〈|ψi(q)|2n〉, we can do the integral over q and obtain

Fn(Ec) = Ld
∑
i

〈|ψi|2nδ(Ei − Ec)〉, (5.8)

where we write |ψi| for |ψi(q)|. The generalized dimensions will now describe the scaling
of the inverse participation ratios, and by definition we have

Fn(E) ∝ L−τn ,

where τn = Dn(n− 1) and L is the system size.
One of the most prominent examples of where multifractality of the eigenfunctions

occurs, is the Anderson transition, where near the mobility edge Ec, the fractal dimensions
Dn are nontrivial [52]. These critical exponents depend only on the basic symmetries of
the Hamiltonian H and on the dimension of the space d. We say that Pn,i shows an
anomalous scaling with the system size L. For a metallic state, we have Dn = d and for
the insulating state Dn = 0. The difference ∆n with the scaling of extended states is
called the anomalous dimensions, and defined by the relation

τn = d(n− 1) + ∆n.

Consider now the eigenvector probability density P(|ψ|2), that is, let P(|ψ|2) be such
that

〈|ψ|2n〉 =

∫ ∞
0

snP(s)ds,

where one should think of s being |ψ|2. Define α by s = L−α, that is, α = − log s/ logL,
then ds/dα = −L−α logL. With a change of variables from s to α we have

〈Pn〉 = Ld
∫

log(L)L−(n+1)αP(L−α)dα.

The log(L) is unimportant for the asymptotics, and we drop this factor. The analog of
Eq. (5.6) is the following. The singularity spectrum f is such that [8, Section C2]

P(s) ∼ 1

s
L−d+f(− log s/ logL),

then

〈Pn〉 =

∫
L−nα+f(α)dα. (5.9)

As in Eq. (5.7) f(α) is related to τn = Dn(q − 1) by a Legendre transform, and has the
interpretation of being the box counting dimension of the set of points q, where |ψi(q)|2
scales as |ψi(q)|2 ∼ N−α.
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Example 5.1.4 (Completely delocalized states). The `p-norm of completely delocalized
states ψ, with absolute values of components |ψi| = N−1/2, such that ‖ψ‖`2 = 1, is given
by

‖ψ‖p`p =
N∑
j=1

|ψj|p = NN−p/2 = N1−p/2.

4

Example 5.1.5 (Gaussian Orthogonal Ensemble). The Gaussian Orthogonal Ensem-
ble describes a metallic state, where Dn = d. We have the following estimate for the
p-norms [53, Theorem 2.2].

Theorem 5.1.6 (`p-norm). The eigenvectors of the GOE are random vectors uniformly
distributed in the unit sphere SN−1. For any such random vector v and p ≥ 1, there is a
cp > 0, such that

‖v‖p`p = N1−p/2cp + lower orders in N,

for almost all v ∈ SN−1.

Take n = 2p, Ec = Ei for some i and v = ψi. Eq. (5.8) holds with Dn = 1.
An important ingredient in this proof is the fact that the entries are independently

distributed from a PDF, which has a Gaussian tail and mean 0. 4

Example 5.1.7 (Gaussian Unitary Ensemble). The probability density PGUE(s) of one
component |ψi,j|2 to take value s is given by [41, (5.10.13)]

PGUE(s) =

{
(N − 1)(1− s)N−2 for 0 ≤ s ≤ 1,

0 otherwise.

Note that after normalization η = sN this results in the Porter-Thomas distribution

PGUE(η) = e−η.

The eigenfunction moments are now, for real n > 0,

N∑
i=1

〈|ψi,j|2n〉 = N(N − 1)

∫ 1

0

sn(1− s)N−2ds = (N − 1)B(n+ 1, N − 1)

= N(N − 1)
Γ(n+ 1)Γ(N − 1)

Γ(n+N)
=

Γ(n+ 1)Γ(N + 1)

Γ(n+N)
.

Here, B(·, ·) is the beta function, and Γ(x) is the gamma function. Then, the finite N
approximations of the fractal dimensions are [54, (35)]

Dn(N) =
1

1− n logN
log

(
Γ(n+ 1)Γ(N + 1)

Γ(n+N)

)
≈ 1− log(Γ(n+ 1))

(n− 1) logN
.

Indeed, as N →∞, Dn → 1, with logarithmic corrections. 4
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Example 5.1.8 (Diagonal matrices). Diagonal matrices have eigenvectors ei, 1 ≤ i ≤ N ,
where {ei} is the standard basis of RN or CN . The eigenvectors are completely localized,
which is seen by writing ei as ei = (0, . . . , 0, 1, 0 . . . , 0). We have, independent of N ,

‖ei‖p`p = 1, for all p > 0.

Let 〈·〉 be an ensemble average over a certain set of diagonal matrices, such that the
subset of diagonal matrices where there is an energy with multiplicity greater than 1 is
of measure 0. We can conclude that

Fn(E) ∝ N0 for all n > 0.

Therefore, Dn = 0 for all n > 0. 4

Example 5.1.9 (Random band matrices). The Random band matrices are a transition
between the diagonal matrices and the Gaussian ensembles. The Random band matrices
of band width L can be constructed as follows. First sample a matrix H from a Gaussian
ensemble. Then set the (i, j)-entry in H to zero for all i, j sufficiently off-diagonal |i−j| ≤
L. For L = 1 we get diagonal matrices, the case L = N results in the Gaussian ensemble.
The special case L = 1 are the tri-diagonal matrices.

A variant of this are the Power Law Banded Random matrices, where standard devi-
ation depends on the value of |i− j|. 4

5.1.2 Rényi entropy

In this subsection, we put forward a relation presented by Chen et al. [55] between
the multifractal spectrum and the Rényi entanglement entropies. The relation should
provide more insight in the nature of integrable to chaotic transition, namely that the
system becomes more entangled. The Rényi entanglement entropies differ slightly from
the Rényi entropies used to define the multifractal dimensions. This subsection is based
on Chen et al. [55].

In the following, let ρ = |ψ〉〈ψ| be the density matrix. Here, ψ is some quantum state,
for example one may choose ψ = ψi, the i-th eigenvector. As this is a pure state, ρ2 = ρ
and tr(ρ) = 1, and hence both the von-Neumann entropy and the Rényi entropy are zero,

S = − tr(ρ log ρ) = 0,

Sq =
1

1− q
log(tr ρq) = 0.

The entanglement entropy, on the other hand, will not be zero. Partition the system into
two subregions A and B, and only observe part A. For example, we may choose A to be
the single site j, and B to be all other sites. The entanglement entropy is the entropy of
the reduced density matrix ρA = trB ρ, where the trace is over all possible configurations
of region B,

Ŝq =
1

1− q
log tr ρqA.

The hat indicates that this is an entanglement entropy, to avoid confusion with the general
Rényi entropy definition Eq. (5.4), where one still has to choose the probabilities pj. It
can be shown that [55],

TrρqA = pqA + pqB,
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where pA and pB are the probabilities that ψ lies in region A and B, respectively. In the
case A is a single site j, we have pA = |ψj|2 and pB = 1 − |ψj|2. The site j is not more
special than any other site, so we look at the average over all sites j, denoted by [·]j,

[tr ρnA]j =
1

N

∑
j

(
(1− |ψj|2)

q
+ |ψj|2q

)
=

1

N

[
N∑
m=0

(
q

m

)
(−1)m

∑
j

|ψj|2m +
∑
j

|ψj|2n
]

Now,
∑

j |ψj|2q is the inverse participation ratio Pq, which is assumed to scale as L−τn ,

where N = (a/L)d. Here a is the lattice constant, L the system size and d the system
dimension. For |q| < 1, we now have the approximation

[tr ρqA]j ≈ 1− q(a/L)d + (a/L)τq+d,

which results in the following approximation for the site averaged Rényi entanglement
entropy [55],

(1− n)Sq ∼ −q
( a
L

)d
+
( a
L

)τq+d
.

This relates the multifractal dimensions to the scaling of the site averaged Rényi entan-
glement entropy.

5.2 Level compressibility

Wave function multifractality is a characteristic of the intermediate state between local-
ized (non-diffusive) and extended (diffusive) wave functions. It occurs amongst others
in the Anderson transition if the wave function has a certain energy, called the mobility
edge. We expect that the level compressibility at criticality lies in between the Poisson
result (χ = 1, fully compressible) and the Wigner-Dyson result (χ = 0, incompressible).
This is derived for disordered metals at the mobility edge using the diffusion propagator,
and this derivation is originally due to Chalker, Lerner and Smith [56], which we also
follow in this section.

We consider the following Brownian motion path through an ensemble of disordered
metals, with a fictitious time parameter τ ,

H(τ) = H0 +

∫ τ

0

dτ ′V (τ ′, ~r),

H0 = − ~2

2m
∇2 + U(~r),

where U(~r) and V (τ, ~r) are two Gaussian distributed potentials, with zero mean and
standard deviation

〈U(~r)U(~r′)〉 =
~

2πρtel
δ(~r − ~r′) (5.10a)

〈V (τ, ~r)V (τ ′, ~r′)〉 = v2Ldδ(τ − τ ′)δ(~r − ~r′). (5.10b)

Here, tel is the time scale for electron scattering on impurities, and ρ is the average
spectral density, ρ = 〈%(E)〉. Using perturbation theory, we have

δEn = Vnn +
∑
m6=n

VmnVnm
En − Em

,
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where

Vnm =

∫ τ+δτ

τ

dτ ′〈n|V (τ ′, ~r)|m〉,

〈~r|n〉 = ψn(τ ′, ~r),

with ψ(τ ′, ~r) the eigenfunctions of H(τ ′). The average over all V , using Eq. (5.10b),
results in [56]

〈VnmVmn〉 = 〈VnnVmn〉 = v2

∫
dτcnm(τ),

where the correlation functions cnm(τ) are given by

cnm(τ) = Ld
∫

ddr|ψn(τ, r)|2|ψm(τ, r)|2.

From this, it follows that the energy levels satisfy the following Langevin equation,

dEn(τ)

dτ
v2
∑
l 6=0

cn,n+l(τ)

En(τ)− En+l(τ)
+ ξn(τ),

for some random variable ξn(τ) with zero mean and variance 〈ξn(τ)ξm(τ ′)〉 = v2δ(τ −
τ ′)cnm(τ). This Langevin equation differs from the Langevin equation from Dyson Brow-
nian motion in that the variances of Vnm depend on the eigenvectors of H(τ). If this
would not be the case, it could also be solved exactly using the Fokker-Planck equation.
Chalker, Lerner and Smith [56] showed that the spectral form factor,

K(t) =
1

2π~

∫ ∞
−∞

R∞(E)e−iEt/~dE,

can be expressed in terms of the return probability p(t) as

K(t) =
|t|p(t)

(2π)2 + 4π
∫ t

0
p(t′)dt′

, (5.11)

if some approximations are made. This relation holds for times shorter than the Heisen-
berg time tH = ~/∆, where ∆ is the mean level spacing. Note that the level compress-
ibility is given by χ = 2πK(0).

We will now follow [46] and show a relation between D2 and the deficiency of the
normalization sum rule α (Eq. (4.27)), but much of the derivation was also already
present in Chalker, Lerner and Smith [56]. The return probability p(t) can be expressed
in terms of the diffusion propagator P (~q, ω),

p(t) =
2

β

∫
dω

2π

∑
~k

P (~k, ω)e−iωt/∆.

For metals and sufficiently small ω � D/L2, a delta shaped wave packet at the origin
will spread out homogeneously throughout the system, hence the sum over all momenta
reduces to only the ~k contribution (there are no nonzero modes). The diffusion propagator

is given by P (~k, ω) = (Dk2 − iω)
−1

, so p(t) = 2/β. We generalize the diffusion coefficient
to D(k, ω) and require that it is independent of k at kLω � 1, and independent of ω at
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kLω � 1, where Lω := (−iρω)−1/d. This results in D(k, ω) ∝ kd−2, where k = |~k|, for
large k. Let us now take multifractality into account. It should also be visible in the
large k limit, so a natural assumption is

k2D(k, ω) = Ckd−ηL−ηω .

With this assumption, for large k, the return probability is given by

p(t) ∼ (ΛL)η

t1−
η
d

.

Let us fill this in into Eq. (5.11), with Q = (ΛL)η, and impose the thermodynamic limit,
in which Q is divergent,

K(t) = |t|Qt
η
d
−1

(
(2π)2 + 4π

∫ t

0

Qt′
η
d
−1dt′

)−1

= |t|Qt
η
d
−1

(
(2π)2 + 4π

d

η
Qt

η
d

)−1

−−−→
Q→∞

|t|t ηd−1

4π d
η
t
η
d

=
|t|
t

1

4π d
η

,

hence
χ = 2πK(0) =

η

2d
.

This is the relation between the violation of the normalization sum rule and multifractal-
ity. Furthermore, we see that for critical disordered metals, the level compressibility lies
between values of Gaussian ensembles, χ = 0 (Eq. (4.28)) and the Poisson result χ = 1
(Eq. (4.29)).

5.3 A multifractal ensemble

Let us now give an example of a deformed ensemble satisfying multifractal statistics. To
this end, consider the space of Hermitian matrices H with PDF [57]

P (H) ∝ exp(−β trV (H)), V (x) =
∞∑
n=0

log[1 + 2qn+1(1 + 2x2) + q2(n+1)],

with 0 < q < 1 a control parameter. For large |x|, the potential converges to a log2,

V (x)→ A log2 |x|, A =
2

log(q−1)
.

It turns out that the kernel K(s− s′) for log q−1 � 1 is [58]

K(s− s′) = πκ
sin(π(s− s′))

sinh(π2κ(s− s′))
,

for some κ, so that the two level correlation function (which is the determinant of a 2× 2
matrix of K’s) for N →∞ is

R∞(s− s′) = 1− π2κ2 sin2(π(s− s′))
sinh2(π2κ(s− s′))

.
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The deficiency of the normalization sum rule α,

α =

∫ ∞
−∞

π2κ2 sin2(πs)

sinh2(π2κs)
ds

lies between Wigner-Dyson and Poisson statistics 0 < α < 1. Indeed, it is clear that
α > 0 and furthermore

α <

∫ ∞
−∞

π2κ2 sin2(πs)

(π2κs)2 ds =

∫ ∞
−∞

sin2(πs)

π2s2
ds = 1.

The precise form of V (x) allows for an exact solution in terms of q−1-Hermite poly-
nomials. For this calculation we refer the reader to [58] and [59]. We will only write the
weight function in terms of the third Jacobi theta function here. For this, denote with
(a; q)n :=

∏n
k=1(1−aqk−1) the q-Pochhammer symbol or q-shifted factorial. Furthermore,

write (a1, a2, . . . ; q)n = (a1, q)n(a2, q)n . . . for the product of q-shifted factorials. With u
defined in terms of x by x = sinh(u), the weight function w(x; q) = exp(−V (x)) can be
written as [58, Eq. (2.2)]

w(x; q) = exp

(
−
∞∑
n=0

log
(
1 + 2qn+1(1 + 2x2) + q2(n+1)

))
=
[
1 + 2qk cosh(2u) + q2k

]−1

=

[
∞∏
k=1

(1 + qke−2u)(1 + qke2u)

]−1

= (−qe−2u,−qe2u; q)
−1

∞ .

Jacobi’s third theta function is defined as (see for example [31, p. 463])

θ3(z; q) :=
∑
n∈Z

qn
2/2zn. (5.12)

It satisfies a triple product expansion (see for example [31, p. 469-472]),

θ3(z, q) = (q,−q1/2z,−q1/2z−1)infty = (q; q)∞(q;−q1/2z)∞(q;−q1/2z−1)∞

= (q; q)∞

∞∏
k=1

(1 + qk−1/2z)(1 + qk−1/2z−1). (5.13)

Choose now z = q1/2e2u to obtain

1

w(x; q)
=
θ3(q1/2e2u; q)

(q; q)∞
,

which establishes the relation with Jacobi’s third theta function.

5.4 Methods for calculating eigenvectors

Random matrix theory has been successful for describing eigenvalue statistics. The main
ingredient for this success is the conjugation invariance of the probability measures, which
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reduces the problem significantly. Furthermore, the resulting Jacobian contained a Van-
dermonde determinant. This has allowed us to derive the Coulomb gas analogy in Sec-
tion 2.4, resulting in the Wigner semicircle law, and is the basis of the orthogonal poly-
nomial method via Dyson’s theorem, as will be discussed in Section 4.1. Furthermore,
Guhr [37] also used the Coulomb gas analogy to obtain exact results for the transition
from Poisson to Gauss, see Section 3.3.

It is therefore no surprise that the calculation of eigenvector statistics, primarily the
inverse participation ratios, has proved to be more difficult. The nature of this problem
kills the unitary invariance; the eigenvectors are the column vectors of the unitary matrix
used to diagonalize the Hermitian matrix. In this section, we will explore methods which
try to use only the eigenvalues of the random matrices, but still provide useful results
about eigenvector statistics.

In the following, assume H is a Hermitian matrix with eigenvalues λ1(H), . . . , λN(H).
As the set of degenerate matrices H is usually of measure zero, we will assume that
all eigenvalues are distinct. Furthermore, it is assumed that the eigenvalues are ordered
λ1(H) < · · · < λN(H). We will also sometimes drop the explicitH, and write λi for λi(H).
Let vi be the eigenvector corresponding to λi(H) for i = 1, . . . , N , with components vi,j,
j = 1, . . . , N . Assume the eigenvectors have norm 1, ‖vi‖2 =

∑
j |vi,j|2 = 1. Finally,

let Mij be the submatrix of H obtained by deleting the i-th row and j-th column, with
eigenvalues λ1(Mij), . . . , λN−1(Mij) also ordered non-decreasingly.

The resolvent of H is the matrix G(λ;H) = (λI −H)−1, which can be written in
terms of the eigenbasis as

G(λ;H) =
N∑
j=1

vjv
†
j

λ− λj(H)
.

The key observation is now that the projection on the i-th eigenspace can be extracted
by taking the residue

viv
†
i =

1

2πi

∮
Cλi

(λI −H)−1dλ, (5.14)

where Cλi is a contour in the complex plane around the eigenvalue λi and λi only. In the
following, we will just drop the C and write

∮
λi

for
∮
Cλi

. Let now ej be the j-th basis

vector of CN , and define Bj = eje
†
j, then the j-th component of vi can be calculated using

Eq. (5.14) as

|vi,j|2 = tr
(
viv
†
iBj

)
. (5.15)

Using Cramer’s rule, the resolvent can be written as the ratio of two determinants.
A ratio of two determinants gives rise to a nonlinear sigma model, by writing both
determinants as a Gaussian integral with either commuting (bosonic) or anti-commuting
(fermionic) variables. Also, with Cramer’s rule, Eq. (5.15) results in an old elementary
identity, popularized again in 2019 by Denton et al. [14], and called the eigenvalue-
eigenvector identity. In my opinion, this name is misleading because the identity also
involves the determinant of the ij-th submatrix. This is important because this minor
introduces the preferred basis. Therefore, we will call this identity the projected Cramer’s
rule.

Theorem 5.4.1 (Cramer’s rule). The inverse of a matrix A, if it exists, is given by

A−1 =
1

detA
adj(A),
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where adj(A) is the adjugate matrix, which has entries (adj(A))ij = (−1)i+j detMji,
where Mji is the ji-th submatrix of H.

Corollary 5.4.2 (Projected Cramer’s rule). Let Bj = eje
†
j, i, j = 1, . . . , N , then

|vi,j|2 =

∏N−1
k=1 (λi(H)− λk(Mjj))∏N
k=1(λi(H)− λk(H))

. (5.16)

Proof. Fill in Eq. (5.14) into Eq. (5.15), and replace (λ−H)−1 using Cramer’s rule, with
A = λ−H,

|vi,j|2 =
1

2πi

∮
λi(H)

tr(adj(λ−H)Bj)

det(λ−H)
dλ = Resλ→λi(H)

det(λ−Mjj)

det(λ−H)
,

from which Eq. (5.16) can be deduced by writing the determinant as the product over
the eigenvalues.

Remark 5.4.3. Use Cramer’s rule again, with A = H − λ to get

(H − λ)adj(H − λ) = det(H − λ)I.

For eigenvalues λ = λi(H), det(H − λi) = 0. Then, each column vector of adj(H −
λi(H)) satisfies the eigenvector equation, so each nonzero column of adj(H−λi(H)) is an
eigenvector of H. There exists at least one such nonzero column because adj(H −λi(H))
has rank equal to the degeneracy of λi(H). This fact will be used in Section 6.2. Here, we
assumed that H is not proportional to the identity matrix, that is H 6= cI for all c ∈ C.
In this case any vector is an eigenvector. We ignore this case, because for the ensembles
we consider, this set is of measure zero.

Without taking the residue, Eq. (5.16) is

N∑
i=1

|vi,j|2

λ− λi(H)
=

det(λ−Mjj)

det(λ−H)
. (5.17)

Furthermore, by doing a row expansion around the j-th row of det(λ−H), we see that

∂

∂J
det(λ−H − JBj) = det(λ−Mjj).

This is the starting point of the nonlinear sigma model, where the partition function

Zj(x, J) :=
det i(λ−H − JBj)

det i(λ−H)
, (5.18)

is calculated by writing the determinants as Gaussian integrals over bosonic and fermionic
fields. For example, for the denominator the Gaussian integral is√

(2π)N

detA
=

∫
exp

(
−1

2
xTAx

)
dNx,

where x can be thought of as a bosonic field. In Appendix A, this technique is used
to derive the inverse participation ratios for the Gaussian Unitary Ensemble, but the
method can be extended to allow for perturbative corrections on the GUE result.



5.4 Methods for calculating eigenvectors 82

Another application of Eq. (5.14) is Morozov’s formula. Suppose here that H is
already diagonalized, namely let X = diag(λ1(H), . . . , λN(H)) and let U be the unitary
matrix of eigenvectors, such that H = UXU †. As ej for j = 1, . . . , N are eigenvectors of
X, the projection on the eigenspace Eq. (5.14) becomes

eie
†
i =

1

2πi

∮
λi(H)

(λI −X)−1dλ.

Suppose also that Y is another matrix with eigenvalues λ1(Y ), . . . , λN(Y ) all distinct.
Then, we have

|Ui,j|2 =
1

(2πi)2

∮
λi(X)

dx

∮
λj(Y )

dy tr

(
U †

1

x−X
U

1

y − Y

)
.

For the unitary group with measure dUeXU
†Y U , the expectation value of the integrand

tr
(
U(x−X)−1U †(y − Y )−1) evaluates to [38],

∫
U(N)

dU tr

(
U †

1

x−X
U

1

y − Y

)
etr(UXU†Y ) =

detE − det
(
E − 1

x−XE
1

y−Y

)
∆(X)∆(Y )

, (5.19)

where ∆(X) is the Vandermonde determinant and E is the matrix with entries Eij =
exiyj . Eq. (5.19) is called Morozov’s formula. This formula can be applied to calculate
expectation values of eigenvector components in the Poisson to GUE transition using the
model described in Section 3.3.

More generally, let π, ρ ∈ Sn be two permutations of length n. Choose two sets of
indices, {i1, . . . , in} ⊂ {1, . . . , N} and {j1, . . . , jn} ⊂ {1, . . . , N}. Then [32, Eq. (6.1.21)],

Ui1,jπ(1) . . . Uin,jπ(n)U
†
jρ(1),i1

. . . U †jρ(n),in

=
1

(2πi)2n

∮
Xi1

dx1· · ·
∮
Xin

dxn

∮
Yi1

dy1· · ·
∮
Yin

dynH(~x, ~y;UXU †, Y )π,ρ,

where Xi := Cλi(X) is a contour around λi(X) and

H(~x, ~y;X, Y )π,ρ =
∏

c=cycle of π◦ρ−1

(
δlength(c),1 + tr

∏
i∈c

1

xρ(i) −X
1

yi − Y

)
.

A generalization of Eq. (5.19) also exists, for which we refer the reader to Eynard et
al. [32, Section 6.1.1].

Finally, the form of Eq. (5.17) suggests that if the matrix H is of such a form that
one has both an expression of the determinant of the jj-th minor of H as well as the
determinant of H itself, by taking residues, eigenvector components can be calculated.
One such case are Toeplitz±Hankel matrices. Toeplitz matrices are matrices where the
matrix entries only depend on the diagonal it is on, that is, the matrix is of the form

H = [dj−k]
N
j,k=1,

for some di, i = −N, . . . , N . Toeplitz matrices, therefore, describe 1-dimensional hopping
models, with nearest, next-to-nearest,. . . neighbor hopping, with strength d±1, d±2, . . . .
In a Hankel matrix, the entries only depend on the sum of coordinates [di+j]

N
i,j=1. This
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3

presence of non-ergodic extended phase and of above men-
tioned ergodic transition puts on a solid ground the search
for ergodic transition and non-ergodic extended phase on
Random Regular Graphs (RRG) (initiated in Ref. [49, 50]
and discussed in detail in [50]) and in real many-body sys-
tems [51, 52]. Slow dynamics on RRG [53–55] and in disor-
dered spin chains [56–58] may be a signature of such a phase.
In this work we suggest the translation-invariant extension of
the RP model and study the localization properties of the RP
family of models along with the PLRBM family as the corre-
lations in the long-range hopping increase.

A remarkable feature of random TI models is the presence
of the Poisson spectral statistics within the delocalized phase
(see Fig. 3). This goes against the common wisdom that the
Poisson statistics signals of localization. The reason for such
a behavior is that the Poisson spectral statistics emerges in
the parameter region where the states in the coordinate space
are, indeed, extended and weakly ergodic [59] but those in
the momentum space are localized. The common wisdom
assumes by default that the states in momentum space are
always chaotically extended. The TI models introduced in
this paper constitute a class of models where this assump-
tion fails. We formulated principles to identify the type of
basis-invariant spectral statistics if the statistics of eigenstates
in the coordinate and in the momentum spaces are known (see
Fig. 3). One of them reads that the Poisson spectral statistics
emerges each time when the eigenstates are localized either in
the coordinate or in the momentum space [60]. These state-
ment is checked numerically in the paper.

The results of this paper allow us to formulate a new phase
diagram which is presented in Fig. 1. This figure shows a
certain hierarchy of phases with respect to the extent of er-
godicity of eigenstates. The fully ergodic (FE) phase cor-
responds to the Porter-Thomas eigenfunction statistics if it
is basis-independent. The corresponding level statistics is
Wigner-Dyson. We denote the states as weakly ergodic (WE)
if the eigenfunction support set [50, 61] in a given basis scales
like the matrix size N but the significant fraction of sites
are not populated. The eigenfunction statistics in the WE
phase is basis-dependent and deviates from the Porter-Thomas
one. The non-ergodic extended, (multi)-fractal (F) states are
characterized by the support sets which scale as ND, where
0 < D < 1. Finally the localized (L) states correspond to
D = 0. Obviously, the ergodicity of the states decreases in
the following sequence:

FE →WE → F → L . (1)

The main result of this paper illustrated by Fig. 1 is that
with increasing correlations in the long-range hopping the se-
quence of phases at a certain fixed disorder strength is that of
Eq. (1) where some phases of this sequence may be missing,
i.e. with increasing the correlations in the long-range hopping
the ergodicity of eigenstates progressively degrades. Simul-
taneously, the lines of localization or ergodic transitions are
shifted to lower disorder. At fully correlated long-range hop-
ping the delocalized states in the bulk of the spectrum disap-
pear whatsoever.

It is important that the critical lines of all transitions bend

Figure 3. Localization-delocalization phase diagrams for
(left) RP– and (right) PLBM–families of ensembles. Addition-
ally to coordinate-space diagrams (above horizontal lines) and level-
statistic diagrams (in the middle) for TI-models the momentum-
space diagrams are shown below the lines. The phases in TI-RP
model are symmetric with respect to duality point γ = 1. The type
of spectral statistics (Wigner-Dyson, Poisson and hybrid) is indicated
for each phase. Notice Poisson level statistics in delocalized phases
of TI- models in accordance with general principles formulated in
Sec. IV. The increase of correlations in the hopping (from bottom
to top) first destroys the fully-ergodic phase in all models, making
TI-systems weakly ergodic (WE), and then (in YS and BM models)
localizes wave functions in the coordinate space.

to the left, i.e. the states which are localized in the ab-
sence of correlations remain localized when the correlations
are present. However the former ergodic extended states may
become weakly ergodic, non-ergodic or even localized in the
presence of correlations in the long-range hopping. This is the
essence of correlation-induced localization.

II. LOCALIZATION CRITERIA FOR MODELS WITH
LONG-RANGE HOPPING.

The most generic free-particle Hamiltonian is defined as
follows:

Hnm = εmδnm + jnm , (2)

where 1 ≤ m,n ≤ N are lattice sites, εm are random on-
site energies with zero mean 〈εm〉 = 0 and the variance〈
ε2
m

〉
= ∆2 [62] represents uncorrelated diagonal disorder.

The (possibly correlated) hopping integrals jmn = j∗nm can
be deterministic or random and they are characterized by the
averaged value 〈jnm〉 and the variance 〈|jnm|2〉. Throughout
the text we refer to the correlations in the hopping terms jnm
simply as correlations. For simplicity we restrict our consid-
eration to d = 1, unless stated otherwise.

The basic localization principle originally suggested by
Mott [63] states that the wave functions are localized (ex-
tended) when the disorder strength ∆ is larger (smaller) than
the bandwidth ∆p in the absence of diagonal disorder. The re-
sults of this paper and other recent works [34–39, 41, 64, 65],
however, show that this principle should be reformulated.

Let us first consider the case when the spectrum of the off-
diagonal part of the Hamiltonian Eq. (2) ĵ = Ĥ(εn = 0) is

Figure 7: Phase diagrams of three variants of the RP (left) and PLRBM (right) models.
TI stands for translational invariant. The eigenvalue statistics is drawn in cyan, the
eigenvector statistics is the top row and the bottom row, in the case of a TI model, are
the eigenvector statistics in momentum space. The TI models require a correlation of
jnm = jkl for n −m = k − l, therefore upper models are more correlated. This figure is
taken from Nosov, Khaymovich and Kravtsov [7, Figure 3].

describes a boundary repulsion or attraction in the 1-dimensional hopping model. In
Section 6, determinants of Toeplitz ± Hankel matrices will be calculated using techniques
also used in the context of orthogonal polynomials (Section 4).

The study of Toeplitz Hamiltonians, while allowing for diagonal perturbations as
in Section 3.3.2, is further motivated by a recent paper by Nosov, Khaymovich and
Kravtsov [7], where the singularity spectrum of such a model is studied. In this paper,
the free particle Hamiltonian H with coefficients Hnm = εmδnm + jnm = H0 + V is
considered, where εm are random on-site energies with zero mean and variance 〈ε2

m〉 = ∆2.
The random parameters jnm = j∗mn are the hopping parameters. These may be taken
deterministically, in which case we say that the variance 〈|jmn|2〉 is zero. It is assumed that
the hopping parameters are of Toeplitz form, that is, jnm = jn−m. Nosov, Khaymovich
and Kravtsov consider two kinds of variances 〈|jn−m|2〉, the Rosenzweig-Porter (RP)
model, where 〈|jn−m|2〉 = ∆2N−γ, for some γ, and the Power Law Random Banded
(PLRBM) model, where 〈|jn−m|2〉 = (1 − δnm)/|n −m|2a, for some a. In both cases the
mean of jn−m is zero. Their results are as follows [7]. For both the RP and PLRBM
models, the translational and regular variants have the same critical values of γ and a.
The eigenstates still transition from localized to ergodic, albeit to only weakly ergodic
in the translational invariant case. With fully ergodic is meant that the eigenfunctions
have Porter-Thomas statistics. Weakly ergodic states are states where the eigenfunction
support set scales with N , but also the set where the eigenfunction is zero. The statistics
of the eigenvalues, on the other hand, is not Wigner-Dyson in the ergodic case, but
Poisson. These statements are summarized in Figure 7.
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6 Toeplitz and Hankel matrices

Toeplitz and Hankel matrices are closely related to random matrix theory. A Toeplitz
matrix H is a matrix where the entries are equal on the diagonals, that is, it is of the
form

H =


d0 d−1 · · · d−N
d1 d0 · · · d−N+1
...

...
. . .

...
dN dN−1 · · · d0

 = [dj−k]
N
j,k=1 =: TN(f),

where f : S1 → C is the generating function of TN(f), defined by

f(z) =
∑
m

dmz
m.

In other words, dm are the Fourier coefficients of f . We could also pick any sufficiently
smooth f and define a Toeplitz matrix TN(f) generated by f , using these Fourier coeffi-
cients;

TN(f) := [dj−k]
N
j,k=1, dm :=

1

2π

∫
S1

zf(z)dz.

Examples of Toeplitz matrices are nearest-neighbor hopping Hamiltonians.
Toeplitz matrices are, in a way, related to the unitary group, as will be explored in

Section 6.1. Much of the theory extends to the classical Lie groups SO(2N + 1), Sp(2N)
and SO(2N), where one obtains Toeplitz±Hankel matrices. Note that the Cartan labels
corresponding to these groups are B,C and D respectively.

Hankel matrices are matrices where the entries depend only on the position on the
other diagonal, 

d−N d−N+1 · · · d0

d−N+1 d−N+2 · · · d1
...

...
. . .

...
d0 d1 · · · dN


6.0.1 Symmetric polynomials

Symmetric and in particular Schur polynomials play an important role in the study of
Toeplitz matrices. These are reviewed in the current subsection. A good reference for
symmetric polynomials is Macdonald [42].

A partition λ is a sequence of non-negative, λ = (λ1, λ2, . . . , λ`(λ)), in descending order
λ1 ≥ λ2 ≥ . . . . Here, `(λ) is the length of the partition. Partitions can be drawn as a
diagram of boxes, called a Young diagram, such that the i-th row contains λi boxes. For
example, the partition (5, 5, 2) is drawn as

We say, for two partitions λ and µ, that λ contains µ, λ ⊂ µ, if λ contains µ as a diagram,
that is λi ≥ µi for all i ≥ 1. For such λ and µ, we define the skew diagram λ/µ as the set
difference of diagrams of λ and µ. For example, with λ = (5, 5, 2) and µ = (2, 1) we have
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A column of width w and length l will be denoted with (wl). For example, the diagram
of (13) is

The transpose λ′ of a partition λ is the mirror image in the diagonal. For example, the
transpose of (13) = (3) is

We say that a partition λ is even if all coefficients are even, that is λi is even for all i ≥ 1.
Finally, a partition λ of length `(λ) can be reversed to obtain a vector of length `(λ) in
ascending order, λr = (λ`(λ), λ`(λ)−1, . . . , λ1).

Our only use of partitions is to label Schur polynomials.

Definition 6.0.1 (Schur polynomials). Schur functions for a partition λ is defined as the
symmetric function in variables x = (x1, . . . , xN)

sλ(x) :=
det
(
xj
λi−i+N

)
i,j

det
(
x−i+Nj

)
i,j

for `(λ) ≤ N,

where `(λ) is the length of the partition λ, and zero otherwise.

The first and second Jacobi-Trudi formulas express the Schur polynomials in terms of
the elementary symmetric and completely homogeneous symmetric polynomials,

sλ(x) = det(hj−k+λk(x))`(λ)
j,k=1 (6.1a)

sλ(x) = det
(
ej−k+λ′k

(x)
)`(λ′)
j,k=1

. (6.1b)

In particular, for λ = (n) a partition consisting of a single row of length n, this results
in s(n)(x) = hn(x) and s(1n) = en(x). Therefore, Schur polynomials can be seen as
a generalization of both the elementary symmetric and the completely homogeneous
polynomials. There is also a generalization of Eq. (4.16) and Eq. (4.18), which are called
the Cauchy-identities (Eq. (6.16)).

A Young tableau is a diagram with boxes filled with positive integers. It is called
semistandard if the integers are nondecreasing on the rows and strictly increasing on the
columns. The following is an example of a skew semistandard tableau,

1 1 2

2 3 3

1 3

(6.2)
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The weight of a tableau is the partition µ = (µ1, µ2, . . . ), where µi is the number of times
the symbol i occurs, i ≥ 1.

Let λ, µ, ν be three partitions. Define the coefficients cλµν by

sµsν =
∑
λ

cλµνsλ. (6.3)

The cλµν are called Littlewood-Richardson coefficients. The Littlewood-Richardson rule
computes these coefficients, and goes as follows. Let T be a tableau, then the derived
word w(T ) of T is the word obtained by reading, for each line, the contents of the boxes
from right to left, as in Arabic, and concatenating the results. For example, the word
of Eq. (6.2) is 21133231. We call a word w(T ) = a1a2 . . . aN , where ai ∈ {1, 2, . . . , n}, a
lattice permutation if for each prefix a1a2 . . . ar, 1 ≤ r ≤ N , the symbol i occurs not less
than i+1, for 1 ≤ i ≤ n−1. For example, the word 21133231 is not a lattice permutation
because, the coefficients cλµν are the number of skew semistandard tableaux T of shape
λ/µ and weight ν such that the word of T , w(T ) is a lattice permutation.

Example 6.0.2. Let λ = (3, 2), µ = (1), ν = (3, 1). As the right most box in the first
row must be a 1, the entire first row must be 1, but this means that the right most box
of the second row must be a 2. The remaining box must be filled with a 1, to make sure
that the tableau contains the symbol 1 three times. This results in cλµν = 1, since the
only valid Littlewood-Richardson tableau is

1 1

1 2
.

4

In terms of the Littlewood-Richardson coefficients, one can define skew Schur functions
as

sλ/µ =
∑
ν

cλµνsν .

The skew Schur functions satisfy a similar equation to the Jacobi-Trudi formulas Eq. (6.1),

sλ/µ = det
(
hλi−µj−i+j

)`(λ)

i,j=1
,

sλ′/µ′ = det
(
eλi−µj−i+j

)`(λ)

i,j=1
.

6.0.2 Generators

We will concern ourselves with f(z) of the form

f(z) =
∞∏
i=1

1

1− xiz

∞∏
i=1

1

1− yiz
= H(x; z)H(y; z−1), (6.4a)

or

f(z) =
∞∏
i=1

(1 + xiz)
∞∏
i=1

(1 + yiz
−1) = E(x; z)E(y; z−1), (6.4b)

or

f(z) = exp

(∑
m>0

1

m

(
pmz

m + p∗mz
−m)), (6.4c)
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where x = {xi}∞i=1, y = {yi}∞i=1, p = {pi}∞i=1 and p∗ = {p∗i }
∞
i=1 are arbitrary independent

parameters. This is because for these we can perform explicit calculations using the
Cauchy identity or dual Cauchy identity.

In principle, a choice of f in the form Eq. (6.4) is without loss of generality, be-
cause both homogeneous and elementary symmetric polynomials hk(x) and ek(x) are
algebraically independent. Therefore, it is always possible to find x such that the Fourier
coefficients dk of f satisfy dk = hk(x) or dk = ek(x). Let us now give some examples of
f(z) which are already written in the form Eq. (6.4).

Example 6.0.3 (Vieta’s formulas). Let f be a Laurent polynomial f(z) =
∑p

k=p−w dkz
k,

with p ∈ Z≥0 and w ∈ Z>0. The band width of the Toeplitz matrix is w + 1. Also,
P (z) := zw−pf(z) is a polynomial of degree w, say with zero’s α1, . . . , αw, and can be
written

P (z) = dp

w∏
j=1

(z − αj) = dpz
w

w∏
j=1

(1− αjz−1) = dpz
wE(−α; z−1) = dpz

w

∞∑
k=0

ek(−α)z−k.

Note that ek(α1, . . . , αw) is the sum over all distinct products of k distinct variables.
Therefore, ek(α) = 0 for k > w and ek(−α) = (−1)kek(α). This results in

P (z) = dp

w∑
j=0

(−1)w−jew−j(α)zj. (6.5)

Plugging Eq. (6.5) back in the formula for f results in

f(z) = dp

p∑
k=p−w

(−1)p−kep−k(α)zk = dpz
pE(α,−z−1).

In particular, we have ep−k(α) = (−1)p−kdk/dp. These relations are called Vieta’s formu-
las. This can be used to write the Toeplitz matrix TN(f) generated by f

TN(f) = dp[ep+k−j(−α)]Nj,k=1.

This can be written in terms of Schur functions using the Jacobi-Trudy formula’s Eq. (6.1b)
as detTN(f) = dNp s(Np)(−α). 4

Example 6.0.4 (Tridiagonal Toeplitz matrix). [60, Section 4.1] Let f(z) = E(y; z−1)E(x; z),
where x and y are single variables, that is

f(z) = E(y; z−1)E(x; z) = (1 + yz−1)(1 + xz) = yz−1 + (1 + xy) + xz.

Then, TN(f) is the tridiagonal matrix

TN(f) =

1 + xy y . . .

x 1 + xy
. . .

...
. . . . . .

 .

For the special case x = y = −1, this generates the finite element method approximation
of the Laplacian. 4
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Example 6.0.5 (Jacobi’s third theta function). [10, Section 3.1] Let |q| < 1, then Jacobi’s
third theta can be written as (Eqs. (5.12) and (5.13))∑

n∈Z

qn
2/2zn = (q; q)∞

∞∏
k=1

(1 + qk−1/2z)(1 + qk−1/2z−1)

= (q; q)∞E(q1/2, q3/2, . . . ; z)E(q1/2, q3/2, . . . ; z−1).

Then, f(z) defined as

f(z) := Θ(z) := E(q1/2, q3/2, . . . ; z)E(q1/2, q3/2, . . . ; z−1),

generates a Toeplitz matrix with coefficients dk = (q; q)−1
∞ q

k2/2. The Jacobi’s third theta
function Θ(U) is related to Chern-Simons theory on S3 as follows. The integrals

〈Wµ〉G(N) =
1

ZG(N)

∫
χµG(N)(U)Θ(U)dU

and

〈Wλµ〉G(N) =
1

ZG(N)

∫
G(N)

χλG(N)(U
−1)χµG(N)(U)Θ(U)dU,

are proportional to the expectation values of the Wilson loop of the unknot and Hopf
links of Chern-Simons theory on S3 [10, Section 3.1]. Here ZG(N) is the partition function,

ZG(N) = (q; q)N∞

∫
G(N)

Θ(U)dU.

4

The same calculations can be applied to the other three Theta functions.

Example 6.0.6 (Gross-Witten-Wadia model). [11], [12] The Gross-Witten-Wadia model
is characterized by [10, Section 3.2]

fGWW (z) = exp
(
−β(z + z−1)

)
.

This fits the general form f(z) = exp
(∑

m>0(pmz + p∗mz
−1)/m

)
with p1 = p∗1 = −β and

pi = p∗i = 0 for i > 1. 4

Example 6.0.7 (Brezin-Gross-Wittem model). [11], [13] The general f defined as

f(z) = exp

(∑
m>0

1

m

(
pmz

m + p∗mz
−m))

appears in the context of the Brezin-Gross-Witten model, where the parameters p and
p∗ are called coupling constants. 4

Let us denote for some diagonalizable matrix U , f(U) =
∏N

i=1 f(zi), where zi are

the eigenvalues of U . Furthermore, write DN(f) = det(dj−k)
N
j,k=1, and more generally

Dλ,µ
N (f) = det

(
dj−λj−k+µk

)N
j,k=1

, so that DN(f) = D∅,∅N (f). Also note that the determinant

of the j, k-th minor of TN(f) is given by D
(1j),(1k)
N−1 (f).

In order to calculate integrals over the unitary, orthogonal or symplectic group, it
will be important to write the integrands in terms of Schur functions, because then the
integrals will be easy due to Schur orthogonality. We need the Cauchy identities to do
so.
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Lemma 6.0.8 (Cauchy identities). Let x = {xi}∞i=1 and y = {yi}∞i=1, then we have the
Cauchy identity ∑

ν

sν(x)sν(y) =
∞∏

i,j=1

1

1− xiyj

and dual Cauchy identity ∑
ν

sν(x)sν′(y) =
∞∏

i,j=1

(1 + xiyi),

where
∑

ν is the sum over all partitions ν of any length. Here, ν ′ is the transpose partition
of ν.

Proof. For the proof we refer to Macdonald [42, p.63].

Note that the equalities in Eq. (4.18) and Eq. (4.16) are special cases of the Cauchy
identities.

The Cauchy identity allows us to rewrite

N∏
i=1

H(x; zi) =
∞∏
j=1

N∏
i=1

1

1− xjzi
=
∑

`(ν)≤N

sν(x)sν(z),

where partitions with length > N do not contribute, because zi = 0 for i > N , hence
sν(z) = 0 for `(ν) > N . In particular, for zi eigenvalues of some matrix U ,

H(x;U) =
∑

`(ν)≤N

sν(x)sν(U),

where we write sν(U) for sν(z1, . . . , zN). A similar expression holds for E(x;U). As a
result, when f is expressed as Eq. (6.4a) we get∫

U(N)

f(U)dU =

∫
H(x;U)H(y;U−1)dU

=

∫ (∑
ν

sν(x)sν(U)

)(∑
µ

sµ(y)sµ(U)

)
dU

=
∑
ν,µ

sν(x)sµ(y)δµν

=
∑

`(ν)≤N

sν(x)sν(y) (6.6)

Here we used Schur orthogonality and the fact that the Schur polynomials are the char-
acters of the unitary group Proposition 6.1.2. Again a similar expression holds for
Eq. (6.4b), the difference being that the sum is over partitions, for which the trans-
pose has length ≤ N , `(ν ′) ≤ N . Similar expressions can also be found for f of the form
f(U) = H(x;U)E(y;U−1), but we do not consider this possibility here.

If f is of the form Eq. (6.4c), we cannot directly use the Cauchy identity. If one can
find variables x = {xi}∞i=1 and y = {yi}∞i=1 such that

pm =
∞∑
i=1

xmi = pm(x) (6.7a)
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and

p∗m =
∞∑
i=1

ymi = pm(y), (6.7b)

we have that f(z) = H(x; z)H(y; z−1) and we can use Eq. (6.6) to get, in the limit of
N →∞,

lim
N→∞

∫
U(N)

f(U)dU = lim
N→∞

∑
`(ν)≤N

sν(x)sµ(y) =
∞∏

i,j=1

1

1− xiyj

= exp

(∑
m>0

1

m
pm(y)pm(x)

)
= exp

(∑
m>0

1

m
p∗mpm

)
. (6.8)

This method extends to slightly more general f , such as

f(z) = exp

(∑
m>0

(−1)m+1

m

(
pmz

m + p∗mz
−m)).

In this case, the result will be the same and is called the strong Szegö limit. It will be
discussed in Theorem 6.1.7 also for the unitary and symplectic groups.

If variables p and x are related by Eq. (6.7), it will be useful to introduce some notation
for the Schur polynomial sλ(x) depending on the variables x. The function sλ(p), with a
bold typeset argument p, is defined by

sλ(p) := sλ(x),

where the variables x are related to p by Eq. (6.7). That is, sλ(p) is a Schur polynomial
in the variables x, defined implicitly by p.

To summarize, we have stated which kind of functions f we will consider, stated
examples of functions f written in this form and have shown a method for calculating
integrals over the unitary, symplectic or orthogonal group for such f . In the next section,
we will see that this is in fact relevant, because it is possible to calculate determinants of
Toeplitz ± Hankel matrices as integrals over the unitary, symplectic or orthogonal group.

6.1 Determinants as integrals

For the unitary group, we can apply Lemma 4.1.1 directly.

Corollary 6.1.1. Let f(z) be a function on the measure space (S1, dθ/2π), that is, a
function on the unit circle, then∫

U(N)

f(U)dU =
1

N !

∫
[0,2π]N

detV (e−iθ) detV (eiθ)
N∏
k=1

f(eiθk)
dθk
2π

= det

(
1

2π

∫ 2π

0

e−ijθeikθf(eiθ)dθ

)N
j,k=1

= det(dj−k)
N
j,k=1 = DN(f),

where

dk =
1

2π

∫ 2π

0

e−ikθf(eiθ)dθ

is the k-th Fourier coefficient of f and V (x) = [xN−jj ]
N

j,k=1
is the Vandermonde matrix,

so that detV (x) = ∆(x) is the Vandermonde determinant.
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More generally, we write Mλ
U(N)(x) for the generalized Vandermonde matrix

Mλ
U(N)(x) = [xN−k+λk

j ]
N

j,k
, (6.9)

so that the Schur polynomial can be written as

sλ(x) =
detMλ

U(N)(x)

detMU(N)(x)
.

This formula is also the Weyl Character formula.

Proposition 6.1.2 (Characters of the unitary group). The Schur functions are the ir-
reducible characters of the unitary group.

Proof. This proof is based on [61, A.5]. The character of semisimple Lie algebra’s is given
in terms of the Weyl character formula as

χλ(x) =
Aλ+ρ

Aρ
, where Aµ =

∑
w∈W

sgn(w)ew(µ),

where W is the Weyl group of the Lie algebra, and ρ the sum over all fundamental
weights. Using the Weyl denominator formula, Aρ can also be written as

Aρ =
∏
α∈R+

(
eα/2 − e−α/2

)
, (6.10)

where R+ is the set of positive roots.
In the case of gln, the Cartan subalgebra consists of the diagonal matrices εi = Eii.

Note that we do not consider sln here due to the technical difficulty that εi is not an
element of sln. Decompose λ =

∑N
i=1 λiεi. The set of positive roots is given by εi − εj

for i < j, and hence

ρ =
1

2

∑
i<j

(εi − εj) =
N∑
i=1

(
N + 1

2
− i
)
εi.

The second step follows simply by reordering the sum. The Weyl group is Sn, as we could
still reorder the basis. Write xi = eεi , then Aλ+ρ happens to be a determinant

Aλ+ρ =
∑
w∈Sn

sgn(w)x
λ1+N+1

2
−1

w(1) . . . x
λN+N+1

2
−N

w(N) = det
(
x
λi+

N+1
2
−i

j

)
i,j
.

Remember that Aρ in Eq. (6.10) is just the Vandermonde determinant, therefore the
character can be written as

χλU(N)(U) =
det
(
x
λi+

N+1
2
−i

j

)
i,j

det
(
x
N+1

2
−i

j

)
i,j

=
det
(
xλi+N−i

)
i,j

det
(
xN−ij

)
i,j

= sλ(x),

where x1, . . . , xN are the eigenvalues of U . Therefore, the character of the unitary group
is equal to the Schur polynomial of the eigenvalues.
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Corollary 6.1.1 can now be generalized to the groups Sp(2N), SO(2N) and SO(2N +
1), with detMG(N)(x) be given by [62, Lemma 2]

detMU(N)(x) = det
(
xN−kj

)N
j,k=1

=
∏

1≤j<k≤N

(xj − xk), (6.11a)

detMSO(2N+1) = det
(
xN−k+ 1

2 − x−N+k− 1
2

j

)N
j,k=1

=
∏
j<k

(xj − xk)(1− xjxk)
N∏
j=1

(xj − 1)x
−N+ 1

2
j ,

(6.11b)

detMSp(2N)(x) = det
(
xN−k+1
j − x−N+k−1

j

)N
j,k=1

=
∏
j<k

(xj − xk)(1− xjxk)
N∏
j=1

(x2
j − 1)x−Nj ,

(6.11c)

detMSO(2N)(x) = det
(
xN−kj + x−N+k

j

)N
j,k=1

= 2
∏
j<k

(xj − xk)(1− xjxk)
N∏
j=1

x−N+1
j .

(6.11d)

Define Mλ
G(N)(x) similarly to Eq. (6.9), by replacing k → k − λj, for example,

Mλ
SO(2N+1)(x) := [xN−k+λj+

1
2 − xN+k−λj− 1

2 ].

For SO(2N), we must assume here that λN = 0. The general case would require some
minor modifications.

Corollary 6.1.3. Let f(z) be a measurable function on the unit circle, with Fourier
coefficients dk, then [10, Eq. (4)-(7)]∫

U(N)

f(U)dU = det(dj−k)
N
j,k=1,∫

SO(2N+1)

f(U)dU =
1

2N
det(dj−k + dk−j − d1−j−k − dj+k−1)Nj,k=1,∫

Sp(2N)

f(U)dU =
1

2N
det(dj−k + dk−j − d−j−k − dj+k)Nj,k=1,∫

SO(2N)

f(U)dU =
1

2N−1
det(dj−k + dk−j + d2−j−k + dj+k−2)Nj,k=1.

We will denote this integral with DG(N)(f). Therefore, DN(f) = DU(N)(f).

Proof. For the case G(N) = SO(2N) the following holds,∫
SO(2N)

f(U)dU

=
2

2N
det

(
1

2π

∫ 2π

0

(e−iθ(N−j) − ziθ(N−j))(eiθ(N−k) − z−iθ(N−k))f(eiθ)dθ

)N
j,k=1

=
2

2N
det

(
1

2π

∫ 2π

0

(e−iθ(k−j) − z−iθ(j+k−2N) − e−iθ(2N−j−k) + z−iθ(j−k))f(eiθ)dθ

)N
j,k=1

=
2

2N
det(dk−j − dj+k−2N − d2N−j−k + dj−k)

N
j,k=1

=
2

2N
det(dj−k − d2−j−k − dj+k−2 + dk−j)

N
j,k=1.
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In the last step, we replaced k → N + 1− k, j → N + 1− j. Similarly, for Sp(2N),∫
Sp(2N)

f(U)dU =
1

2N
det(dj−k − dj+k−2N−2 − d2N+2−j−k + dj−k)

N
j,k=1

=
1

2N
det(dj−k − d−j−k − dj+k + dk−j)

N
j,k=1,

and finally for SO(2N + 1),∫
SO(2N+1)

f(U)dU =
1

2N
det(dj−k − dj+k−2N−1 − d2N+1−j−k + dj−k)

N
j,k=1

=
1

2N
det(dj−k − d1−j−k − dj+k−1 + dk−j)

N
j,k=1.

In the special case that dk = d−k, one recovers Equation (4) − (7) of Garćıa-Garćıa and
Tierz [10].

Proposition 6.1.2 is generalized to the expression

χλG(N)(U) =
detMλ

G(N)(x)

detMG(N)(x)
=: sλG(N)(x), (6.12)

with x1, . . . , xN the eigenvalues of U . Therefore,∫
G(N)

χλG(N)(U
−1)χµG(N)(U)f(U)dU

= CG(N)
1

N !

∫
[0,2π]N

detMλ
G(N)(e

−iθ) detMµ
G(N)(e

iθ)
N∏
k=1

f(eiθk)
dθk
2π

,

where constants CG(N) are

CU(N) = 1, CSp(N) = CSO(2N+1) =
1

2N
, CSO(2N) =

1

2N−1
.

This expression can again be calculated using Andreiéf’s identity Lemma 4.1.1. We will
just state the results

Lemma 6.1.4. Let f be as in Corollary 6.1.1, then

Dλ,µ
U(N)(f) = det

(
dj+λrj−k−µrk

)N
j,k=1

,

Dλ,µ
SO(2N+1)(f) =

1

2N
det
(
dj+λrj−k−µrk + dk+µrk−j−λ

r
j
− d1−j−λrj−k−µrk − dj+λrj+k+µrk−1

)N
j,k=1

,

Dλ,µ
Sp(2N)(f) =

1

2N
det
(
dj+λrj−k−µrk + dk+µrk−j−λ

r
j
− d−j−λrj−k−µrk − dj+λrj+k+µrk

)N
j,k=1

,

Dλ,µ
SO(2N)(f) =

1

2N−1
det
(
dj+λrj−k−µrk + dk+µrk−j−λ

r
j

+ d2−j−λrj−k−µrk + dj+λrj+k+µrk−2

)N
j,k=1

.

Here,

Dλ,µ
G(N) :=

∫
G(N)

χλG(N)(U)χµG(N)(U)f(U)dU (6.13)

and
λr := (λN−j+1)j = (λN , . . . , λ1).

In the special case of dk = d−k, this result reduces to Theorem 1 of Garćıa-Garćıa and
Tierz [10].
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Finally, let us discuss some facts about the Schur polynomials. First some notation.

Definition 6.1.5. The Schur polynomials for the groups SO(2N + 1), Sp(2N) and
SO(2N) are denoted as follows;

sλ(x) = sU(N)(x),

ooddλ (x) = sSO(2N+1)(x),

spλ(x) = sSp(2N)(x),

oevenλ (x) = sSO(2N)(x).

Baker [63] showed that these characters are related to the regular Schur polynomials
by the action of an operator. The reader can also consult Equation (13) of Van de Leur
and Orlov [61]. Namely, write ∂̃ = (∂p1 , 2∂p2 , 3∂p3 , . . . ) and define

Ω∓(p) =
∑
m>0

(
− 1

2m
p2
m ∓

1

2m
p2m

)
,

so that Ω∓(∂̃) is given by

Ω∓(∂̃) =
∑
m>0

(
−m

2
(∂m)2 ∓ ∂2m

)
.

Then, the Schur polynomials are related by

ooddλ (p) = eΩ−(∂̃)sλ(p), spλ(p) = eΩ+(∂̃)sλ(p).

In particular, if we act with Ω∓(∂̃∗) on the Cauchy identity, we get new Cauchy identities

τ−(p|p∗) =
∑
λ

ooddλ (p∗)sλ(p),

τ+(p|p∗) =
∑
λ

spλ(p
∗)sλ(p),

where τ∓(p|p∗) are given by

τ∓(p|p∗) = exp

(
−1

2

∑
m>0

1

m
p2
m ∓

∑
m>0

1

2m
p2m +

∑
m>0

1

m
pmp

∗
m

)
= eΩ∓(p)τ0(p|p∗) (6.14)

with τ0 a Toda lattice tau function

τ0(p|p∗) := exp

(∑
m>0

1

m
p∗mpm

)
. (6.15)

Note that τ∓(p|p) = e−Ω±(p). By reintroducing x and y variables and identifying some
Taylor series, these Cauchy identities can also be written as∑

ν

sν(y)sν(x) =
∞∏

i,j=1

1

1− yixj
, (6.16a)

∑
ν

ooddν (y)sν(x) =
∏
i≤j

(1− xixj)
∞∏

i,j=1

1

1− yixj
1

1− y−1
i xj

∞∏
j=1

1

1− xj
, (6.16b)
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∑
ν

spν(y)sν(x) =
∏
i<j

(1− xixj)
∞∏

i,j=1

1

1− yixj
1

1− y−1
i xj

, (6.16c)

∑
ν

oevenν (y)sν(x) =
∏
i≤j

(1− xixj)
∞∏

i,j=1

1

1− yixj
1

1− y−1
i xj

. (6.16d)

These Cauchy identities can be found in Van de Leur and Orlov [61, Equation (14), (15),
(31), (32) and (33)] or Garćıa-Garćıa and Tierz [10, Equation (62)-(65)].

The Cauchy identity Eq. (6.16a), written in terms of the variables p and p∗ is

∑
ν

sν(y)sν(x) =
∞∏
j=1

H(y;xj) =
∞∏
j=1

exp

(∑
k>0

pk(y)

k
xkj

)
= exp

(∑
k>0

pk(y)pk(x)

k

)
.

With the notation pk(x) = pk and pk(y) = p∗k this becomes

∑
ν

sν(p)sν(p
∗) = exp

(∑
k>0

1

k
p∗kpk

)
.

Let now U be a unitary matrix with eigenvalues x1, . . . , xN , and Z ∈ G(N) with the
following eigenvalues

y1, y
−1
1 , . . . , yN , y

−1
N if Z ∈ Sp(2N) or Z ∈ SO(2N)

y1, y
−1
1 , . . . , yN , y

−1
N , 1 if Z ∈ SO(2N + 1)

y1, . . . , yN if Z ∈ U(N).

Then, using Eq. (6.16), we have∑
ν

sν(Z)sν(x) = H(x;Z) = τ0(p|Z) (6.17a)∑
ν

ooddν (Z)sν(x) = H(x;Z)H(x;Z−1)H(x; 1)
∏
i≤j

(1− xixj) (6.17b)∑
ν

spν(Z)sν(x) = H(x;Z)H(x;Z−1)
∏
i<j

(1− xixj) = τ+(p|Z) (6.17c)∑
ν

oevenν (Z)sν(x) = H(x;Z)H(x;Z−1)
∏
i≤j

(1− xixj) = τ−(p|Z). (6.17d)

This is because H(x;Z) is defined as the product over the independent eigenvalues of Z,

H(x;Z) =
N∏
i=1

H(x; yi).

Here, we used that

∏
i<j

(1− xixj) =

[∏
i 6=j

(1− xixj)

] 1
2

=

[
∞∏
j=1

1

1− xjxj

] 1
2

exp

(
−1

2

∑
k>0

1

k
p2
k(x)

)
,

and that, with x2 = (x2
1, x

2
2, . . . ),

∞∏
j=1

1

1− xjxj
= H(x2; 1) = exp

(∑
k>0

1

k
pk(x

2)

)
= exp

(∑
k>0

1

k
p2k(x)

)
.
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For completeness, we also state the dual Cauchy identities, in the same form as
Eq. (6.17),∑

ν

sν′(Z)sν(x) = E(x;Z), (6.18a)∑
ν

ooddν′ (Z)sν(x) = E(x;Z)E(x;Z−1)E(x; 1)
∏
i<j

(1− xixj)

= E(x;Z)E(x;Z−1)E(x; 1)eΩ+(p), (6.18b)∑
ν

spν′(Z)sν(x) = E(x;Z)E(x;Z−1)
∏
i≤j

(1− xixj) = E(x;Z)E(x;Z−1)eΩ−(p), (6.18c)∑
ν

oevenν′ (Z)sν(x) = E(x;Z)E(x;Z−1)
∏
i<j

(1− xixj) = E(x;Z)E(x;Z−1)eΩ+(p). (6.18d)

The reader can find these dual Cauchy identities written out completely in Garćıa-Garćıa
and Tierz [10, Eq. (66)-(69)].

For the groups G(N) = SO(2N + 1), Sp(2N) and SO(2N), both the Cauchy iden-
tities Eq. (6.17) and dual Cauchy identities Eq. (6.18) share a common term, namely
H(x;Z)H(x;Z−1) and E(x;Z)E(x;Z−1), respectively. To ease calculations, we will in-
troduce the following notation for the group dependent term,

ΞG(N)(x) =


H(x; 1)

∏
i≤j(1− xixj) G(N) = SO(2N + 1),∏

i<j(1− xixj) G(N) = Sp(2N),∏
i≤j(1− xixj) G(N) = SO(2N).

(6.19)

For the variables p, this becomes

ΞG(N)(p) =


H(x; 1)eΩ−(p) G(N) = SO(2N + 1),

eΩ+(p) G(N) = Sp(2N),

eΩ−(p) G(N) = SO(2N).

(6.20)

Similarly, one can define such a factor for the dual case. We will frequently drop the x or
p if it is clear from the context, and just write ΞG(N). Note that although N is present
in the notation ΞG(N), the value of ΞG(N) does not depend on N , not even on it’s parity.
We only have to include it in the notation to be able to distinguish between the different
groups. In calculations, however, we will often use the following variation, which does
depend on N ,

ΞG(N),N(x) := ΞG(N)(x1, . . . , xN , 0, . . . ). (6.21)

Note that ΞG(N),N(x)→ ΞG(N)(x) as N →∞.

6.1.1 Integrals evaluated

In this section, DG(N)(f) and Dλ,µ
G(N)(f) for the four groups G(N) = U(N), SO(2N +

1), Sp(2N), SO(2N) shall be calculated. For G(N) = U(N), this is the following propo-
sition.

Proposition 6.1.6. Let f(z) = H(x; z)H(y; z−1) for some x = {xi}∞i=1 and y = {yi}∞i=1.
Then

Dλ,µ
N (f) =

∫
U(N)

χλU(N)(U
−1)χµU(N)(U)H(x;U)H(y;U−1)dU =

∑
`(ν)≤N

sν/λ(y)sν/µ(x).
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Proof. The result for λ = µ = ∅ is precisely Eq. (6.6). In general,

Dλ,µ
U(N)(f) =

∫
χλU(N)(U

−1)χµU(N)(U)H(y;U−1)H(x;U)dU

=
∑

`(ρ),`(σ)≤N

sρ(y)sσ(x)

∫
U(N)

χλU(N)(U
−1)χµU(N)(U)sρ(U

−1)sσ(U)dU

=
∑

`(ρ),`(σ)≤N

sρ(y)sσ(x)

∫
U(N)

sλ(U
−1)sρ(U

−1)sµ(U)sσ(U)dU

=
∑

`(ρ),`(σ)≤N

sρ(y)sσ(x)
∑
ν,τ

cνλρc
τ
µσ

∫
U(N)

sν(U
−1)sτ (U)dU

=
∑

`(ρ),`(σ)≤N

∑
ν

cνλρc
ν
µσsρ(y)sσ(x).

Here, we used the Littlewood-Richardson rule Eq. (6.3). This concludes the proof.

Theorem 6.1.7 (Szegö, Johansson). Let f(z) = exp
(∑

m>0
1
m

(pmz
m + pmz

−m)
)

with∑
m |pm| <∞ and

∑
mm|pm| <∞, then

lim
N→∞

∫
U(N)

f(U)dU = exp

(∑
m>0

1

m
p2
m

)
= τ(p|p)

lim
N→∞

∫
O(2N+1)

f(U)dU = exp

(
1

2

∑
m>0

1

m
p2
m −

∑
m>0

1

2m− 1
p2m−1

)

lim
N→∞

∫
Sp(2N)

f(U)dU = exp

(
1

2

∑
m>0

1

m
p2
m −

∑
m>0

1

2m
p2m

)
= τ−(p|p)

lim
N→∞

∫
O(2N)

f(U)dU = exp

(
1

2

∑
m>0

1

m
p2
m +

∑
m>0

1

2m
p2m

)
= τ+(p|p).

Proof. The unitary case is shown in Eq. (6.8) together with Eq. (6.15). It remains to
prove the statement for the groups SO(2N+1), Sp(2N) and SO(2N). Using the Cauchy-
identities Eq. (6.17), we have∫

G(N)

f(U)dU =

∫
G(N)

H(x;U)H(x;U−1)dU

= Ξ−1
G(N),N(x)

∫
G(N)

∑
`(ν)≤N

χνG(N)(U)sν(x)dU

= Ξ−1
G(N),N(x)s∅(x) = Ξ−1

G(N),N(x), (6.22)

where Ξ−1
G(N),N is defined by Eq. (6.21). In the limit N →∞, this becomes

lim
N→∞

∫
G(N)

f(U)dU =


exp
(

1
2

∑
m>0

1
m

(p2
m − 2pm) +

∑
m>0

1
2m
p2m

)
, for SO(2N + 1),

exp
(

1
2

∑
m>0

1
m
p2
m −

∑
m>0

1
2m
p2m

)
, for Sp(2N),

exp
(

1
2

∑
m>0

1
m
p2
m +

∑
m>0

1
2m
p2m

)
, for SO(2N).

With Eq. (6.14), this can be written in terms of τ∓(p|p) =
(
eΩ±(p)

)−1
.
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We remark that we may also write Eq. (6.22) for G(N) = SO(2N + 1), Sp(2N) and
SO(2N) as a sum over Schur polynomials∫

G(N)

f(U)dU = Ξ−1
G(N),N =

∑
`(ν)≤N

sν(x)sνG(N)(x). (6.23)

This is analogous to the U(N) result, Proposition 6.1.6 with λ = µ = 0.
Using the same the method as in the proof of Theorem 6.1.7, we can generalize

Proposition 6.1.6 to Dλ,µ
G(N) as follows.

Proposition 6.1.8. Let f(z) be as in Proposition 6.1.6, with x = y. Let furthermore
ΞG(N),N be defined by Eq. (6.21). Then

Dλ,µ
N (f) = Ξ−1

G(N),N(x)
∑

`(σ)≤N

bλµσsσ(x)

Proof. This is again a simple calculation exploiting Schur orthogonality,

Dλ,µ
N (f) =

∫
G(N)

χλG(N)(U
−1)χµG(N)(U)H(x;U)H(x;U−1)dU

= Ξ−1
G(N),N(x)

∑
`(σ)≤N

sσ(x)

∫
G(N)

χλG(N)(U
−1)χµG(N)(U)χσG(N)(U)dU

= Ξ−1
G(N),N(x)

∑
`(σ)≤N

sσ(x)
∑
τ

bτµσ

∫
G(N)

χλG(N)(U
−1)χτG(N)(U)dU

= Ξ−1
G(N),N(x)

∑
`(σ)≤N

bλµσsσ(x)

Here, the coefficients bνλµ are defined by the relation [64]

χλG(U)(U)χµG(N)(U) =
∑
ν

bνλµχ
ν
G(N)(U). (6.24)

These exist because the polynomials sλ(x), defined by Eq. (6.12), form a complete basis
of polynomials in x. In fact, in terms of the Littlewood-Richardson coefficients, these are
given by

bκλµ =
∑
σ,ρ,τ

cλστc
µ
ρτc

κ
σρ. (6.25)

Note that from Eq. (6.3) it follows that cνλµ = cνµλ, so that also bκλµ = bκµλ, as is required
by Eq. (6.25)

Proposition 6.1.8 together with Theorem 6.1.7 show that any ratio of Dλ,µ
N (f) is inde-

pendent of the specific group G(N), for G(N) = SO(2N + 1), Sp(2N) and SO(2N + 1).
This can be extended to also allow for G(N) = U(N).

Proposition 6.1.9 (Theorem 6 of [10]). The following limit exists for G(N) any of
U(N), Sp(2N), SO(2N) or SO(2N + 1),

lim
N→∞

Dλ,µ
G(N)(f)

DG(N)(f)
=
∑
ν

sλ/ν(x)sµ/ν(x).

Here f(z) = H(x; z)H(x; z−1).
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Proof. Due to the limit N →∞ we may replace the sums
∑

`(ν)≤N with
∑

ν .

For G(N) = U(N), this follows directly from Proposition 6.1.6 and the identity∑
ν

sν/λ(x)sν/µ(x) =
∑
ν

sν(x)sν(x)
∑
ν

sλ/ν(x)sµ/ν(x).

Consider now the groups G(N) = SO(2N + 1), Sp(2N) and SO(2N). The result
follows from∑

ν

bλµνsν(x) =
∑
σ,ρ,τ,ν

cµστc
ν
ρτc

λ
σρsν(x) =

∑
σ,ρ,τ

cµστc
λ
σρsρ(x)sτ (x) =

∑
σ

sλ/σ(x)sµ/σ(x).

The only nuisance of Proposition 6.1.9 is that it considers the ratioDλ,µ
G(N)(f)/DG(N)(f)

instead of Dλ,µ
G(N)(f)/DG(N+1)(f). To fix this, we need a little lemma.

Lemma 6.1.10. Let {xi}∞i=1 be a sequence converging to x 6= 0. Suppose furthermore
that {yi}∞i=1 is such that the following limit exists

lim
i→∞

yi
xi

=: z.

Then, the limit limi→∞ yi/xi+1 exists and is equal to z.

Proof. Let ε > 0. Without loss of generality, we may assume ε < |x|/2. Since {xi}∞i=1

converges to x, there exists an N1 such that |xi − xj| < ε2 for all i, j > N . Because x is
nonzero, we can find an N2 such that |xi| > ε for all i > N2. For i, j > max(N1, N2) this
results in the estimate ∣∣∣∣ xixi+1

− 1

∣∣∣∣ =
1

|xi+1|
|xi − xi+1| <

1

ε
ε2 = ε.

Finally, we can find an N3 such that |yi/xi−z| < ε for all i > N3. Let N be the maximum
of N1, N2 and N3. Then, for i > N we have the following estimate for |yi/xi+1 − z|,∣∣∣∣ yixi+1

− z
∣∣∣∣ =

∣∣∣∣( xi
xi+1

− 1

)
yi
xi

+

(
yi
xi
− z
)∣∣∣∣

=

∣∣∣∣( xi
xi+1

− 1

)(
yi
xi
− z
)

+

(
xi
xi+1

− 1

)
z +

(
yi
xi
− z
)∣∣∣∣

< ε2 + |z|ε+ ε.

Now, ε + |z| + 1 is just a constant, so for any ε′ > 0 we can find an ε > 0 such that
ε2 + |z|ε + ε < ε′. The reasoning above gives us an N for which this is satisfied. This
concludes the proof.

Corollary 6.1.11. The limit

lim
N→∞

Dλ,µ
G(N)(f)

DG(N+1)(f)

does not depend on the specific group G(N) = U(N), SO(2N + 1), Sp(2N) or SO(2N),
provided that limN→∞DG(N)(f) 6= 0.

The functions f(z) = H(x; z)H(y; z) considered so far satisfy f(0) = 1. All results
can easily be generalized to f such that f(0) = ec0 , but this involves extra factors of
eNc0 , due to the definition of f(U) =

∏N
i=1 f(zi), with U ∈ G(N) and zi, i = 1, . . . , N the

eigenvalues of U .
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6.2 Eigenvectors of Toeplitz matrices

Our main tool for calculating eigenvectors is as follows. Consider a Hermitian matrix H
with orthonormal basis of eigenvectors {vi}Ni=1, with corresponding eigenvalues Ei. Then,
the eigenvector-eigenvalue identity [14], referred to us by the Projected Cramer’s rule
(Corollary 5.4.2), implies

N∑
i=1

|vi,j|2

Ei − E
=

det(Mjj − E)

det(H − E)
,

where vi,j is the j-th component of vi. The variable E is any complex number outside
the spectrum of H. The matrix Mjj is the (j, j)-th minor of H. In the special case of
Toeplitz matrices H = TN(f), this results in

N∑
i=1

|vi,j|2

Ei − E
=
D

(1j),(1j)
N−1 (f − E)

DN(f − E)
. (6.26)

This can be reduced to an equation for |vi,j|2 by performing a contour integral around a
single eigenvalue Ei, that is, taking the residue at Ei.

Using Eq. (6.26) and Corollary 6.1.11, we are now able to state our main result.

Proposition 6.2.1. Let Ei be an isolated eigenvalue of TG(N)(f), in the limit of N →∞.
Here, TG(N)(f) is the Toeplitz ± Hankel matrix generated by f , as defined in Corol-
lary 6.1.3, that is

TU(N)(f) = [dj−k]
N
j,k=1,

TSO(2N+1)(f) = [dj−k − dj+k−1]Nj,k=1,

TSp(2N)(f) = [dj−k − dj+k]Nj,k=1,

TSO(2N)(f) =
1

2
[dj−k + dj+k−2]Nj,k=1.

Note that, with this definition, DG(N)(f) = detTG(N)(f). Then, for G(N) one of U(N), SO(2N+
1) or Sp(2N), the absolute values of the eigenvector components do not depend on the
group G(N), but only on f and the eigenvalue Ei.

Proof. Note that for these groupsG(N), the characteristic polynomial is given byDG(N)(f−
E). This is not true for G(N) = SO(2N), because for j, k = 1, dj+k−2 = d0, so another
factor of E will be included on the (1, 1)-th entry by the Hankel part.

The absolute value of the j-th component of an eigenvector vi of the matrix TG(N)(f)
can be calculated using the residue formula,

|vi,j|2 =

∫
Ci

N∑
k=1

|vk,j|2

Ek − E
dE =

∫
Ci

D
(1j),(1j)
G(N−1)(f − E)

DG(N)(f − E)
dE. (6.27)

Here, Ci is a contour in the complex plane around Ei, and around Ei only, crossing none
of the other eigenvalues. The right hand side of Eq. (6.27) does not depend on G(N) by
Corollary 6.1.11, in the limit N →∞.
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7 Conclusion

Random matrix theory is not only useful for the description of eigenvalue statistics of
quantum systems whose classical counterpart is chaotic, but also for both eigenvalue and
eigenvector statistics of intermediate statistics in the transition to chaos. We have studied
two important sets of random matrix ensembles, the Gaussian ensembles and the Circular
ensembles, and how these arise naturally when assuming time translation invariance. We
explored the Coulomb gas analogy, Dyson Brownian motion and the connection with
the two-matrix model and the Calogero-Sutherland Hamiltonian. This allowed for the
interpretation of Brownian motion on the Weyl chambers.

Next, we discussed the technique of orthogonal polynomials. This technique can be
used to derive level spacing distributions, which allowed us to compare Wigner-Dyson
statistics to Poisson statistics. These distributions were employed to quantitatively de-
scribe systems with intermediate statistics, using, for example, the level compressibility.
We studied the inverse participation ratios, and showed how this resulted in the interpre-
tation of wave function multifractality. This part was concluded with a study of methods
for calculating these inverse participation ratios, where we introduced the eigenvalue-
eigenvector identity.

Finally, in the main part of this thesis, we applied this identity to Toeplitz±Hankel
matrices. We first showed integral representations of determinants of Toeplitz±Hankel
matrices using Andréief’s identity. Then, we derived formulas in terms of Schur poly-
nomials using Newton’s identities, the Cauchy identities and Schur orthogonality. We
showed, using a simple new proof exploiting relations of Littlewood-Richardson coeffi-
cients, that the ratio of two determinants of Toeplitz±Hankel matrices is independent
of the integration group. Using the eigenvalue-eigenvector identity, we showed our main
result; under some constraints on the coefficients of a Toeplitz and Toeplitz±Hankel, if
such Toeplitz and Toeplitz±Hankel matrix have the same eigenvalue, the absolute value
of their corresponding eigenvector component is equal.

For further research, it would be interesting to look at applying these results to the
translational invariant Rosenzweig-Porter model. Furthermore, one could look at apply-
ing Morozov’s formula to the two-matrix model, to provide an alternative method to the
nonlinear sigma model for calculating IPRs of a near chaotic random matrix ensemble.
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Appendices

A Non-linear sigma model for the Gaussian Unitary Ensemble

Let us apply the non-linear sigma model for the Gaussian Unitary Ensemble and derive
the Wigner semicircle law, the Porter Thomas distribution and the inverse participation
ratios. For this derivation we follow [45]. The reader could also look in the book by
Haake [41, Chapter 6] for more details. As seen in Lemma 3.2.4, we are interested in
Greens functions with slightly perturbed energies, x → x ± iε. These will be called
advanced and retarded Green’s functions. Slightly more general, we also allow for a real
energy offset x→ x± (ω+ iε). Write GA(ej, ek;x) and GR(ej, ek;x) for the advanced and
retarded Green’s function, that is, GR/A(ej, ek;x) = G(ej, ek;x ± (ω + iε)). Let x± be
x± := x± (ω+ iε). Write these Green’s function as a Gaussian integral using Eq. (5.18),

GR/A(ej, ek;x) =
±i
Z

∫
DϕDϕ∗ ϕkϕ∗j exp(iS±[ϕ]),

where

S±[ϕ] = ∓
∑
i,j

ϕ∗i [x±δij −Hij]ϕj,

Z = det(x± −H)−1 =

∫
DϕDϕ∗ exp(iS±[ϕ]).

Here, Dϕ = dϕ1 . . . dϕN , where ϕ1, . . . , ϕN are independent complex variables. In the
limit of N → ∞, this will become a path integral. We would like to do the averaging
first, and then the remaining path integral. Since Z also depends on H, we need to write
this expression as a single integral. This is possible with the use of Gaussian integrals
over Grassmann variables. The difference with a regular Gaussian integral is that the
determinant appears in the numerator,

det(x± −H) =

∫
Dµ∗Dµ exp(iS±[µ]),

where µi and µ∗i , i = 1, . . . , N , are now Grassmann variables. For all i, even µi and µ∗i
are independent Grassmann variables, but they do satisfy the additional relation

(µ∗i )
∗ = µi.

Furthermore, similar to Hermitian conjugation, the conjugation changes the ordering; for
Grassmann variables µ, ν, µ∗ and ν∗,

(µν)∗ = ν∗µ∗ = −µ∗ν∗.

Using this notation we can express the Green’s function as

GR/A(ej, ek;x) = ∓i
∫
Dψ ϕkϕ

∗
j exp(iS±[ψ]),

where
S±[ψ] = S±[ϕ] + S±[µ] = ±

∑
i,j

ψ†i [x±δi,j −Hij]ψj.
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Here we have introduced the combined ψ† and ψ, called super-vectors,

ψ† =
(
ϕ∗ µ∗

)
, ψ =

(
ϕ
µ

)
.

Note that ψ†jψi = ϕ∗jϕj + µ∗jµj. The measure Dψ is Dψ = DϕDµ. The super-symmetry
is broken by the term ψkψ

∗
j . Equivalently, one could write −µkµ∗j instead of ϕkϕ

∗
j here,

which can be seen from Eq. (5.18).

We would now like to do the ensemble average of exp
(
i
∑

ij ψ
†
iψjHij

)
. For this,

consider the slightly more general case where the entries Hij are independently Gaussian
distributed with variance according to the PDF exp(−|Hij|2/Aij). This would also include
the Power-Law Banded Random Matrix ensemble (PBRM). Consider for simplicity the
β = 2 case, so that the variables Hij are complex. For the Gaussian Unitary Ensemble
we have Aij = 1 + δij.

Let us consider all the terms involving Hij for some 1 ≤ i, j ≤ N . The combined term
in the exponential is ∑

ij

[
∓iψ†iψjHij −

1

Aij
|Hij|2

]
For fixed i and j,

∓iψ†iψjHij −
|Hij|2

Aij
= ∓ i

2

(
ψ†iψj + ψ†jψi

)
Hij −

|Hij|2

Aij

= − 1

Aij

(
Hij ±

i

2
Aijψ

†
iψj

)(
Hji ±

i

2
Aijψ

†
jψi

)
− Aij

4
ψ†iψjψ

†
jψi

= − 1

Aij
|H ′ij|2 −

Aij
4
ψ†iψjψ

†
jψi,

(.1)

where

H ′ij = Hij ±
i

2
ψ†iψj.

Note that H ′ij is still a commuting complex number, and furthermore, (H ′ij)
† = H ′ji. For

the Gaussian Unitary ensemble, we can therefore just change integration variables from
Hij to H ′ij. The ensemble average becomes〈

exp

(
∓i
∑
i,j

ψ†iψjH̃ij

)〉
=

∫
dH ′ exp

(
−
∑
ij

1

Aij
|H ′ij|

)
exp

(
−
∑
ij

Aij
4
ψ†iψjψ

†
jψi

)

= exp

(
−
∑
ij

Aij
4
ψ†i (ψjψ

†
j)ψi

)
.

(.2)

In the last step, we used that the PDF for |H ′ij| is normalized to 1. Let Q̃i be the 2× 2
super-matrix

Q̃j := ψjψ
†
j =

(
ϕjϕ

∗
j ϕjµ

∗
j

µjϕ
∗
j µjµ

∗
j

)
,
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then Eq. (.2) can be written as〈
exp

(
∓i
∑
i,j

ψ†iψjH̃ij

)〉
= exp

(
−
∑
ij

Aij
4

trs(Q̃iQ̃j)

)
.

The super-trace is the trace, but with an extra minus sign for the Grassmann − Grass-
mann, or Fermion − Fermion part,

trs

(
BB BF
FB FF

)
:= BB − FF.

With this definition, the cyclic property of the trace still holds, trs(AB) = trs(BA).
Furthermore, we define the super-determinant as

dets

(
BB BF
FB FF

)
:= det

(
BB −BF (FF )−1FB

)
/ det(FF ), if (FF )−1 exists.

Note that the ordinary determinant is given by

det
(
BB −BF (FF )−1FB

)
· det(FF ).

This definition shares some nice properties with the regular determinant [41, Section
6.3.3],

detsF = detsF
T , (.3a)

detsF1F2 = detsF1detsF2, (.3b)

log detsF = trs logF. (.3c)

Note that ψ†iψi = trs(Q̃i). The expectation values of the Green’s functions are therefore,

〈GR/A(ej, ek;x)〉 = ∓i
∫
Dψϕkϕ∗j exp

(
−F [Q̃]

)
,

F [Q̃] = ∓ix±
∑
i

trs(Q̃i) +
1

4

∑
ij

Aij trs(Q̃iQ̃j), Q̃i = ψiψ
†
i . (.4)

We will be interested, however, in expectation values of combinations of advanced and
retarded Green’s functions, for example

〈GR(ej, ej;x)
k
GA(ej, ej;x)

m〉

or
〈GR(ej, ej;x)−GA(ej, ej;x)〉 = −2πiρ(x).

A similar procedure as for Eq. (.4) can be applied to conclude that

〈GR(ej, ej;x)
k
GA(ej, ej;x)

m〉 =
im−k

k!m!

∫
DψRDψA(ψR∗j ψRj )

k
(ψA∗j ψAj )

m
e−F [Q̃A]−F [Q̃R],

(.5)
and

ρ(x) =
1

2π

∫
DψRDψA (ϕR∗j ϕRj + ϕA∗j ϕAj )e−F [Q̃A]−F [Q̃R]. (.6)
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Let us therefore combine the fields ψRi and ψAi into a 4-component super-vector Ψi,

Ψ†i =
(
ϕR∗i −ϕA∗i µR∗i −µA∗i

)
, Ψi =


ϕRi
ϕAi
µRi
µAi

 , Λ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .

This ordering of Ψi is called Bose-Fermi notation. An alternative ordering of retarded
wavefunctions appearing first is called retarded-advanced notation. Let DΨ = DψRDψA.
The quartic term proportional to Aij can be obtained as follows. Group terms propor-
tional to either Hij or Hji. In this case, this is

ψR†i ψRj − ψ
A†
i ψAj = Ψ†iΨjfor Hij,

ψR†j ψRi − ψ
A†
j ψAi = Ψ†jΨifor Hji

Hence, we can do the same derivation as Eq. (.1), with ψ replaced by Ψ. The quartic
term therefore is

1

4

∑
ij

AijΨ
†
iΨjΨ

†
jΨi =

1

4

∑
ij

Aij trs(QiQj),

where Qi = ΨiΨ
†
i . This allows us to write Eq. (.5) and Eq. (.6) as follows

〈(GR)
k
(GA)

m〉 =
im−k

k!m!

∫
DΨ (ψR∗j ψRj )

k
(ψA∗j ψAj )

m
e−F [Q], (.7)

ρ(x) =
1

2π

∫
DΨ (ϕR∗j ϕRj + ϕA∗j ϕAj )e−F [Q], (.8)

F [Q] = −ix
∑
i

trsQi − i(ω + iε)
∑
i

trs(ΛQi) +
1

4

∑
ij

Aij trs(QiQj). (.9)

This is a field theory with a quartic term. Let us concentrate on rewriting
∫
DΨe−F [Q].

The quartic term can be removed at the cost of an extra integral using a Hubbard-
Stratonovich transformation,

e−
∑
ij

Aij
4

trs[(ΨiΨ
†
i )(ΨjΨ

†
j)] =

∫
DPe−

∑
ij A
−1
ij trs[PiPj ]+i

∑
i trs[(ΨiΨ

†
i )Pi]. (.10)

We can use Eq. (.3c) to calculate the following Gaussian integral,∫
Dψ exp

(
ψ†iKiψi

)
= exp

(
−
∑
i

trs[logKi]

)
. (.11)

Note that
trs(AQi) = trs(Ψ

†
iAΨi) = Ψ†iAδijΨj,

hence it can also be calculated as a Gaussian integral. The result is∫
DΨe−F [Q] =

∫
DPDΨ exp

(
−
∑
ij

A−1
ij trs(PiPj) + i

∑
i

Ψ†i (Pi − x− (ω + iε)Λ)Ψi

)
(.12a)



A Non-linear sigma model for the Gaussian Unitary Ensemble V

=

∫
DPe−F [P ],where (.12b)

F [P ] =
∑
ij

A−1
ij trs(PiPj) + i

∑
i

trs log(x− Pi + (ω + iε)Λ). (.12c)

Assumed that ω and ε are small, and furthermore, up to first approximation, that Pi is
independent of i, so that we can write Pi = P0. The approximated action is

N−1F [P0] = A−1
0 trs P

2
0 + i trs log(x− P0).

Here A−1
i :=

∑
j A
−1
ij is also assumed to be independent of i, hence A−1

i = A−1
0 . Let us

therefore vary the action F [P ] with respect to P0, to get the following solution of the
saddle point equation

P0I =
1

2
(x · I + iQ

√
2A0I − x2).

Here, I is the 4 × 4 identity matrix and Q is any super-matrix such that Q2 = 1 and
trsQ = 0. We now add variations around the saddle-point minimum to the action, that
is, let Φi be defined by the following equations

Pi =
1

2

(
E + iΦi

√
2A0 − E2

)
.

Then fill this into the action Eq. (.12c) and expand to first order in ω + iε,

F [Φ] = −1

4
(
√

2A0 − x2)
2∑

ij

A−1
ij trs(ΦiΦj) + i

√
2A0 − x2

A0

(ω + iε)
∑
i

trs(ΛΦi)

= −1

4
(πρA0)2

∑
ij

A−1
ij trs(ΦiΦj)− iπρ(ω + iε)

∑
i

trs(ΛΦi),

where ρ :=
√

2A0 − x2/A0. Here we used that trs(Qi) = 0.

A.1 Spectral density and the Wigner Semicircle

In this section the Wigner Semicircle law is derived. The pre-exponent in Eq. (.8) can be
written as a supertrace,

(ϕR∗j ϕRj + ϕA∗j ϕAj ) = trs(ΠQ)

with the projections

Π = ΠR − ΠA, ΠR =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , ΠA =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

The standard procedure is to add a source term,

δF [Q, J ] = −i
∑
i

Ji trs[ΠQj],

to the action F [Q], take the derivative with respect to J and then set J = 0,

ρ(x) =
1

2πi

∂

∂Jj

∣∣∣∣
J=0

∫
DΨe−F [Q]−δF [Q,J ].
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Note that the new action is the original action with ωΛ→ ωΛ + JjΠ. The saddle point
approximation results in the action Appendix A with ωΛ replaced by ωΛ + JjΠ. This
derivative can now be done easily,

ρ(x) =
1

2

∫
DΦ trs(ΠΦj)e

−F [Φ,ω=0].

For the Wigner-Dyson ensemble, F [Φ, ω = 0] = 0, Aij = 1, so A0 = N . The semicircle
law follows.

A.2 Inverse participation ratios and Porter-Thomas

The supersymmetry method can also be used to calculate IPR’s, as done by Fal’ko
and Efetov [65]. From Eq. (5.17) it is clear that for the IPR’s we must calculate

〈GR(x)
l
GA(x)

m〉, which can be expressed as (see Eq. (.5))

GR(x)
l
GA(x)

m
=
im−l

l!m!

∫
DΨ(ϕR∗j ϕRj )

l
(ϕA∗j ϕAj )

m
e−F [Q].

Write ϕR∗j ϕRj = trs(Π
RQj) and ϕA∗j ϕAj = trs(Π

AQj), then with m = 1 and l = k − 1 we
get

〈|ψi,j|2k〉x =
1

2πρ
ik−2 lim

ε→0

[
(2ε)k−1 i−k+2

(k − 1)!

∫
DΨtrs(Π

RQj)
k−1

trs(Π
AQj)e

−F [Q]

]
=

1

2πρ(k − 1)!
lim
ε→0

[
(2ε)k−1

∫
DΨtrs(Π

RQj)
k−1

trs(Π
AQj)e

−F [Q]

]
,

where,

F [Q] = −ix
∑
i

trsQi − i(ω + iε)
∑
i

trs(ΛQi) +
1

4

∑
ij

Aij trs(QiQj).

We would like to change from an integral over Ψ to an integral over Q now. In this
case however, the fields Qn are not slowly varying. The remedy is to take combinations of
ϕ∗n and ϕn which are slowly varying. This will result into (l+m)! possibilities of breaking
up the product into slow bi-linear combinations [45, Section XVII]. The result is

〈|ψi,j|2k|〉x =
k

2
lim
ε→0

[
(2πρε)k−1

∫
DQ trs(Π

RQj)
k−1

trs(Π
AQj)e

−F [Q]

]
.

Let us define the generating function Y [Qj] as

Y [Qj] =

∫
Qi,i 6=j

DQe−F [Q]. (.13)

This function does not depend on the anti-commuting variables. This integration will
result in a factor (−1). To compensate the factor εk−1, the integral must be large, which
can only be done by changing λ → ελ. The supertraces are then proportional to λk−2,
and in this limit the generating function only depends on ελ. Write s = (2πρελ) to
include prefactors, then [45, Section XVII]

〈|ψi,j|2k|〉x =
k(k − 1)

N

∫ ∞
0

ds sk−2Y (s).
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Therefore, the probability density function P(|ψi,j|2) can be obtained as

P(|ψi,j|2) =
1

N

∂2

∂s2
Y (s)

∣∣∣∣
s=|ψi,j |2

.

In the Wigner-Dyson case for β = 2, the super-matrices Qi are fixed, so there is no
integration in Eq. (.13), hence

P(|ψi,j|2) = Ne−N |ψi,j |
2

.

This is called the Porter-Thomas distribution.

B Hilbert series

In this section we will present an application of the general theory of Toeplitz ± Hankel
determinants for the calculation of Hilbert series. Hilbert series describe the number of
gauge invariant terms that can be added to the Lagrangian of some effective field theory,
for example the Hilbert H(t) series for U(1) is 1 + t+ t2 + . . . , which tells us that there is
precisely one gauge invariant term of order k, which we know to be (ϕ∗ϕ)k. To calculate
the Hilbert series, one needs to integrate the Plethystic polynomial over a classical Lie
group. This expression is similar to the expressions for calculating Toeplitz±Hankel
determinants, as is described in the next subsection.

B.1 Plethystic exponential

In this section we review some basics of the plethystic exponential, based on Appendix
A of Hanany and Kalveks [26].

The Plethystic exponential (PE) of f is defined as

PE(f(t1, . . . , tN), (t1, . . . , tN)) := exp

(
∞∑
k=1

f(tk1, . . . , t
k
N)− f(0)

k

)
(.14)

One should keep the following example in mind: Let U be an N×N diagonalizable matrix
with eigenvalues λ1, . . . , λN , then f(U) can naturally be defined as f(U) = f(x1, . . . , xN),
in which case f(Uk) = f(xk1, . . . , x

k
N). Furthermore, suppose f is a power series expansion

of some f(t1, . . . , tN),

f(t1, . . . , tN) =
∞∑
n=0

N∑
i=1

anit
n
i , (.15)

then

PE(f(t1, . . . , tN), (t1, . . . , tN)) =
∞∏
n=1

N∏
i=1

1

(1− tni )ani
.

The inverse operation is the Plethystic Logarithm (PL),

PL(g(t1, . . . , tN), (t1, . . . , tN)) :=
∞∑
k=1

1

k
µ(k) log g(tk1, . . . , t

k
N), (.16)
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where µ(k) : Z+ → {−1, 0, 1} is the Möbius function, defined as

µ(k) =


0 if k has a squared prime factor,

1 if k has an even number of distinct non-unital prime factors,

−1 if k has an odd number of distinct non-unital prime factors.

For example µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0. The inverse property is expressed
by the relation

PL[PE[f(t1, . . . , tN)]] = f(t1, . . . , tN) = PE[PL[f(t1, . . . , tN)]].

The Plethystic exponential is symmetrizing, that is ‘bosonic’. The ‘fermionic’ anti-
symmetrizing counterpart is the Fermionic Plethystic Exponential (PEF),

PEF(f(t1, . . . , tN), (t1, . . . , tN)) := exp

(
∞∑
k=1

(−1)k+1f(tk1, . . . , t
k
N)− f(0)

k

)

=
∞∏
n=1

N∏
i=1

(1 + tni )ani , (.17)

which has an extra minus sign. The last equality holds if f is defined by Eq. (.15). It’s
logarithm is called the Fermionic Plethystic Logarithm (PLF), and given by

PLF(g(t1, . . . , tN), (t1, . . . , tN)) :=
∞∑
m=0

PL[g(t2m1 , . . . , t2mN ), (t2m1 , . . . , t2mN )]

=
∞∑
m=0

∞∑
k=1

1

k
µ(k) log g(t

(2m)k
1 , . . . , t

(2m)k
N ). (.18)

Let us present some simple examples;

PE[t1] = 1/(1− t1) = 1 + t1 + t21 + . . . ,

PEF[t1] = 1 + t1,

PE

[
t

N∑
i=1

zi, (t, z1, . . . , zN)

]
= exp

(
∞∑
k=1

pk(z)

k
tk

)
=

N∏
i=1

1

1− tzi
,

PEF

[
t

N∑
i=1

zi, (t, z1, . . . , zN)

]
= exp

(
∞∑
k=1

(−1)k+1pk(z)

k
tk

)
=

N∏
i=1

(1 + tzi),

where pk(x) = xk1 + · · ·+xkN . Suppose U is an N ×N matrix with eigenvalues x1, . . . , xN ,
then we may also write pk(x) = pk(U) = tr

(
Uk
)
.

Remark B.1. Instead of the trace we could consider also other characters χ, and study

gG(t, χ) := PE[tχ],

gGF (t, χ) := PEF[tχ].
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The integral over G results in the Hilbert Series H,

H(ϕ) =

∫
G

dµ

{
PE(tχ(g)) for a bosonic field,

PEF(tχ(g)) for a fermionic field,

which can be used to count the number of gauge invariant combinations of a field in a
certain dimension [66].

Because PE[
∑M

j=1 fj] =
∏M

j=1 PE[fj], we have the following example

PE

[(
M∑
j=1

tj

)(
N∑
i=1

zi

)]
= exp

(
∞∑
k=1

pk(z)

k
pk(t)

)
=

M∏
j=1

N∏
i=1

1

1− tjzi
,

and a similar identity for PEF. For multiple fields tj one also has a Hilbert series, where
each field tj transforms in a representation Rj,

H({ti}) =

∫
G

dµ
M∏
j=1

{
PE(tjχRj(g)) for a bosonic field tj,

PEF(tjχRj(g)) for a fermionic field tj,

For the special case of an infinite number of particles with Rj = R for all j and such that

χR(g) =
N∑
i=1

xi +
N∑
i=1

x−1
i ,

we get
H(ti) = τ·(ti|ti),

where the · indicates either 0,+ or −, depending on the specific group G. Furthermore,
suppose the integrand factors, that is

N∏
j=1

PE(tjχRj(g)) =
N∏
i=1

f(zi),

for some f on the unit circle, then

H(ti) = DG(N)(f).
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