Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorMorais Smith, C.
dc.contributor.advisorLeur, J.W. van de
dc.contributor.advisorVleeshouwers, W.
dc.contributor.authorBoere, S.A.
dc.date.accessioned2020-11-23T19:00:30Z
dc.date.available2020-11-23T19:00:30Z
dc.date.issued2020
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/38179
dc.description.abstractWe study methods for calculating eigenvector statistics of random matrix ensembles, and apply one of these methods to calculate eigenvector components of Toeplitz ± Hankel matrices. Random matrix theory is a broad field with applications in heavy nuclei scattering, disordered metals and quantum billiards. We study eigenvalue distribution functions of random matrix ensembles, such as the n-point correlation function and level spacings. For critical systems, with eigenvalue statistics between Poisson and Wigner-Dyson, the eigenvectors can have multifractal properties. We explore methods for calculating eigenvector component expectation values. We apply one of these methods, referred to as the eigenvector-eigenvalue identity, to show that the absolute values of eigenvector components of certain Toeplitz and Toeplitz±Hankel matrices are equal in the limit of large system sizes.
dc.description.sponsorshipUtrecht University
dc.format.extent1358003
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleEigenvalues, eigenvectors, and random-matrix theory
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsRandom matix,multifractal,Toeplitz,eigenvectors
dc.subject.courseuuTheoretical Physics


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record