View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        Automated specification search using meta-heuristics

        Thumbnail
        View/Open
        Tsimeki-Thesis.pdf (759.0Kb)
        Publication date
        2023
        Author
        Tsimeki, Ianthi
        Metadata
        Show full item record
        Summary
        This research investigates the integration of Particle Swarm Optimization (PSO) with Structural Equation Modeling (SEM) to enhance model identification and hyperparameter adjustment. The objective function in the PSO-SEM algorithm combines various fit measures and considers the trade-off between model complexity and fit. For this analysis two datasets that provide different model complexity are employed. These datasets undergo similar preprocessing steps, including handling missing data and partitioning into training and validation sets. The PSO-SEM algorithm is applied to optimize the model fit, and the performance of the final models is evaluated using the validation sets. Through the exploration of different hyperparameter combinations and values, valuable insights are obtained regarding their relative importance and optimal settings. Additionally, the transferability of the selected hyperparameters across different datasets is assessed, and further testing and refinement are conducted to ensure their applicability in diverse contexts. The integration of PSO with SEM offers a flexible and efficient approach for addressing complex problems and uncovering latent relationships in data, while the computational time can be adjusted in each problem, by appropriately tuning parameters such as the number of iterations while sacrificing a certain degree of the accuracy. Generally, this research contributes to the fields of metaheuristics and structural equation modeling by exploring the integration of PSO with SEM for enhanced model identification and hyperparameter adjustment. The findings offer valuable insights and practical implications for researchers engaged in solving complex problems and uncovering latent relationships in data. Furthermore, the results encourage additional investigations, including different metaheuristic algorithms, a variety of datasets and the application of more hyperparameter combinations.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/44958
        Collections
        • Theses
        Utrecht university logo