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Abstract 

 

This thesis investigates the integration of Particle Swarm Optimization (PSO) with Structural 

Equation Modeling (SEM) to enhance model identification and hyperparameter adjustment. The objective 

function in the PSO-SEM algorithm combines various fit measures and considers the trade-off between 

model complexity and fit. For this analysis two datasets that provide different model complexity are 

employed. These datasets undergo similar preprocessing steps, including handling missing data and 

partitioning into training and validation sets. The PSO-SEM algorithm is applied to optimize the model 

fit, and the performance of the final models is evaluated using the validation sets. Through the exploration 

of different hyperparameter combinations and values, valuable insights are obtained regarding their 

relative importance and optimal settings. Additionally, the transferability of the selected hyperparameters 

across different datasets is assessed, and further testing and refinement are conducted to ensure their 

applicability in diverse contexts. The integration of PSO with SEM offers a flexible and efficient 

approach for addressing complex problems and uncovering latent relationships in data, while the 

computational time can be adjusted in each problem, by appropriately tuning parameters such as the 

number of iterations while sacrificing a certain degree of the accuracy. Generally, this research 

contributes to the fields of metaheuristics and structural equation modeling by exploring the integration of 

PSO with SEM for enhanced model identification and hyperparameter adjustment. The findings offer 

valuable insights and practical implications for researchers engaged in solving complex problems and 

uncovering latent relationships in data. Furthermore, the results encourage additional investigations, 

including different metaheuristic algorithms, a variety of datasets and the application of more 

hyperparameter combinations. 
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1. Introduction 

1.1 Motivation and context 

In today's rapidly evolving technological landscape, the ability to efficiently solve complex 

problems has become increasingly significant. Many real-world challenges require the exploration of a 

vast solution space to find optimal or near-optimal solutions. As the size and complexity of these 

problems continue to grow, traditional search algorithms often fall short in providing effective solutions 

within a reasonable timeframe. Metaheuristics, as a branch of optimization in computer science and 

applied mathematics, are offering good solutions on challenging problem instances characterized by large 

search spaces, while they exhibit a high degree of flexibility, allowing them to be tailored and adapted to 

suit different problem domains and requirements (Talbi, 2009). The use of metaheuristics is becoming 

more and more popular in different research areas and industries ranging from optimization tasks in 

engineering (Bozorg‐Haddad, 2017) and logistics (Çakmak, 2021) to decision-making problems in 

finance (Doering et al., 2019) and healthcare (Tongur, 2020). 

 Nature has been a source of inspiration for a plethora of metaheuristic optimization algorithms, 

which has been continuously growing in recent years (Tzanetos and Dounias, 2021). Among the most 

well-known algorithms in this category is the Particle Swarm Optimization (PSO) algorithm, which is 

based on the movement of swarms, herds, and flocks of animals, birds, or other living organisms in 

general. The main characteristic of their movement is the influence of collective behavior and member 

interactions. It was proposed by Eberhart and Kennedy (1995) to solve continuous space optimization 

problems, and subsequently, hundreds of other algorithms have been developed based on it, covering a 

broader range of problem-solving domains. 

 In the field of data analysis, Structural Equation Modeling (SEM) has emerged as a powerful tool 

for uncovering latent relationships and understanding complex systems, by providing a framework for 

examining the underlying structures and causal pathways among observed and latent variables in a 

dataset. By incorporating latent variables, SEM allows researchers to explore unobservable concepts such 

as attitudes, traits, and psychological constructs. Its application extends beyond traditional statistical 

methods, as it not only measures the direct relationships between variables but also captures the indirect 

effects and interdependencies among them. This approach enables researchers to test and refine 

theoretical models, evaluate hypotheses, and gain insights into complex phenomena. Also, SEM has 

proven particularly useful in examining the intricate dynamics of human behavior, where latent variables 

often play a critical role in shaping outcomes. 

In the context of this thesis, the integration of PSO with SEM presents an innovative approach for 

model identification with hyperparameter adjustment. Since every model and every dataset are different, 

there might be a set of hyperparameters that, in combination with PSO, produce acceptable and fast 

results for different datasets and models, providing a useful tool for the researchers. 
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1.2 Literature review 

1.2.1 Structural Equation Modeling  

According to Ullman (2006), Structural Equation Modeling (SEM) is a statistical approach used to 

analyze relationships between independent variables (IVs) and dependent variables (DVs), which can be 

either observed or unobserved (latent). SEM enables the examination of both measured variables and 

underlying constructs that may not be directly observed. It is also known as causal modeling, causal 

analysis, simultaneous equation modeling, analysis of covariance structures, path analysis, and 

Confirmatory Factor Analysis (CFA). More specifically, CFA and path analysis are special types of SEM. 

Generally, SEM provides a comprehensive framework for exploring complex relationships, testing 

hypotheses, and understanding the underlying mechanisms. In SEM the measured variables, also called 

observed variables or indicators, and factors that have at least two indicators are called latent variables, 

constructs, or unobserved variables. 

CFA, as a type of SEM, has the characteristic that is a statistical technique used to validate or 

confirm a pre-defined theoretical structure or model (Ullman, 2006). Firstly, the researcher specifies a 

hypothesized model with predetermined factors and their relationships. Then CFA tries to assess whether 

the observed data supports the proposed structure and tests the fit of the model to the data, by evaluating 

the adequacy of the hypothesized model and making inferences about the relationships between latent 

variables and observed indicators. 

1.2.2 Particle Swarm Optimization 

Eberhart and Kennedy (1995) were the first to study and algorithmically simulate the behavior of 

bird flocks and fish schools during their movement. According to this behavior, each member of the flock 

or school is redirected based on the movement of the nearest member. Particle Swarm Optimization 

(PSO) is based on the interaction among the members of the swarm.  

PSO is inspired by the movement of a flock of birds (population) consisting of individuals 

(particles) that move in a space (search space) towards the bird with the best position (best solution of the 

objective function). During the search, each particle identifies the best position of the search space (best 

solution) among all the particles. In general, each position in the search space represents a solution to the 

problem. This position is described by the values taken by the decision variables, which, when input into 

the objective function of the problem, yield the value of the solution based on the objective function, 

which is called fitness. In maximization problems, the best fitness is considered the highest, while in 

minimization problems, the aim is to find the lowest possible fitness. After the particles compute the 

fitness of their current positions, they tend to move towards the best position found among all the 

searchers, i.e., towards the particle with the best fitness. At the same time, they also consider their own 

best position, i.e., the position with the best fitness they have found so far. Therefore, the next position 

they will explore is directly dependent on the best position of the population and their personal best 

position. This relationship can be expressed mathematically as: 

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + 𝜔1(𝑥𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝜔2(𝑔𝐵𝑒𝑠𝑡𝑡 − 𝑥𝑖
𝑡) 

where 𝑣𝑖
𝑡+1 is the new velocity of the particle 𝑖, 𝑣𝑖

𝑡 is the current velocity of particle 𝑖 at iteration 𝑡, 

𝑥𝐵𝑒𝑠𝑡𝑖
𝑡 represents the best position found by particle 𝑖 (personal best position), while 𝑔𝐵𝑒𝑠𝑡𝑡 denotes the 

best solution among all particles. The parameters 𝜔1 and 𝜔2 represent learning factors, that are uniform 
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random values in the range [0,1]. They also determine the contribution rate that the personal and the 

global best solutions at iteration 𝑡 influence the velocity value at iteration 𝑡 + 1.  

1.2.3 Descriptive Measures 

Measures of overall model fit provide insights into the extent to which a structural equation model 

aligns with the empirical data. These measures are obtained by evaluating the concordance between the 

sample covariance matrix, denoted as 𝑆, and the model's expected covariance matrix, denoted as 𝛴(𝜃). In 

this research the different indices that evaluate the model fit, include Root Mean Square Error of 

Approximation (RMSEA) and Standardized Root Mean Square Residual (SRMR). Another method to 

evaluate a model fit is by comparing the indices fit with to the fit of a baseline model(Schermelleh-Engel, 

2003). Comparative Fit Index (CFI) is one of these methods, which evaluate the fitness of a model, by 

typically comparing it to the null model. The CFI ranges between 0 and 1, with values closer to 1 

indicating a better fit, while values above 0.90 are generally considered indicative of an acceptable fit. 

RMSEA was proposed by Steiger and Lind in 1980, and is a statistical measure used to assess the 

approximate fit of a model in the population. In practical situations, it is often unrealistic to expect an 

exact fit between the model and the data, especially with large sample sizes. Instead, the focus is on 

evaluating whether the model fits closely enough to the population. The traditional null hypothesis of 

exact fit is replaced with a null hypothesis of "close fit". A “close fit” To calculate RMSEA the 

discrepancy due to approximation by estimating the square root of the estimated discrepancy per degree 

of freedom, as: 

𝜀�̂� = √𝑚𝑎𝑥 {(
𝐹 (𝑆, 𝛴(𝜃))

𝑑𝑓
−

1

𝑁 − 1
) , 0} 

where, 𝐹 (𝑆, 𝛴(𝜃)) is the minimum fit function, 𝑁 is the sample size and 𝑑𝑓 denotes the degrees of 

freedom and is calculated as 𝑑𝑓 = 𝑠 − 𝑡. A lower 𝜀�̂�value indicates a better approximate fit, and more 

specifically, values smaller than 0.05 are typically considered to indicate good fit, values ranging from 

0.05 to 0.08 as fair model fit, and values greater than 0.10 as poor fit (Schubert et al., 2017). 

 On the other hand, SRMR equation is constructed as a standardized version of the Root Mean 

Square Residual (RMR), which measures the average discrepancy between the observed and predicted 

covariances. This way, it allows for easier interpretation and comparison across different models. So, 

starting with calculating the RMR as: 

𝑅𝑀𝑅 = √
∑ ∑ (𝑠𝑖𝑗 − �̂�𝑖𝑗)

2𝑖
𝑗=1

𝑝
𝑖=1

𝑝(𝑝 + 1)
2

 

where 𝑠𝑖𝑗 is an element of the empirical covariance matrix, �̂�𝑖𝑗 is an element of the model-implied 

covariance matrix and 𝑝 is the total number of the observed variables. To proceed to the calculation of 

SRMR, the part 𝑠𝑖𝑗 − �̂�𝑖𝑗 is divined by 𝑠𝑖 = √𝑠𝑖𝑖 and 𝑠𝑗 =  √𝑠𝑗𝑗, leading to a standardized residual 

matrix. Similarly, to RMSEA, results close to zero represent a good fit.  
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 Finally, CFI was proposed by Bentler (1990) and is defined as the improvement in fit of the 

proposed model compared to the null model, which assumes no relationships between the observed 

variables. It is calculated as follows: 

𝐶𝐹𝐼 = 1 −
max[(𝜒𝑡

2 − 𝑑𝑓𝑡) , 0)]

max [(𝜒𝑡
2 − 𝑑𝑓𝑡 , (𝜒𝑡

2 − 𝑑𝑓𝑖), 0]
  

where 𝜒𝑖
2 is the chi-square score of the model, 𝜒𝑡

2 is the chi-square score of the target model and 𝑑𝑓 

represents the total number of degrees of freedom.  

1.3 Research question 

The aim of this research is to utilize the particle swarm optimization metaheuristics algorithm to 

perform automated specification search and identify the best model for a given dataset. The focus is on 

models involving latent variables and other relevant factors. The goal is also to explore how this approach 

can effectively identify the most suitable model that accurately represents the underlying structure of the 

data. By combining the descriptive measures to search for a good model in a short amount of time, the 

research seeks to address the following question: 

“How does the automated specification search using the particle swarm optimization metaheuristics 

algorithm can contribute to identify the optimal model that captures the latent variables and factors 

within a dataset?” 

2  Data 

2.1 Description 

The datasets of this research are obtained from the “Open Science Framework” (OSF), an online 

platform for sharing and accessing data and material. The first dataset is the “Validation of a German 

Short Version of the Short Dark Triad Scale” (Wehner, 2021). This dataset is based on the German 

version of the Short Dark Triad, which includes three subscales designed to measure narcissism, 

psychopathy, and Machiavellianism. Participants rated the 27 items using a 6-point rating scale, where 1 

= “strongly disagree” to 6 = “strongly agree”. The dataset consists of 341 variables (columns) and 

contains a total of 1100 entries (rows).  

The second dataset is the “IPIP120” from Johnson's IPIP-NEO data repository, which is a shorter 

version, containing the results of International Personality Item Pool Representation of the NEO PI-R 

questionnaire. Participants were asked to complete this 300-question questionnaire, which aimed to 

measure personality traits based on the Five Factor Model (Neuroticism, Extraversion, Conscientiousness, 

Agreeableness, and Openness to Experience) framework (Johnson, 2014). The total entries of the specific 

dataset are 619150 and there are 130 variables. The 10 first variables of the dataset are related with the 

participants background, like age, sex, and country, while each of the last 120 variables represent the 

answer given on a specific question of the questionnaire, and take values  the values 1 to 5, where 1 = 

“very inaccurate”, 2 = “moderately inaccurate”, 3 = “neither accurate nor inaccurate”, 4 = “moderately 

accurate”, and 5 = “very accurate”. The missing values were coded as 0. 
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2.2 Preparation of Data 

2.2.1 Validation of a German Short Version of the Short Dark Triad Scale 

A total of 27 variables, which are associated with the answers of the participants, were chosen to 

specify the best model to calculate more accurately the traits. Each of these traits represent a latent 

variable and 9 indicators. Some of the questions were formulated using negations and to maintain 

consistency in the scoring, a value of 7 was subtracted from these answers. Furthermore, any entries that 

contain missing values, were removed. 

2.2.2 IPIP120 

The data were given in SPSS format (.por) and were loaded in RStudio through “haven::read_spss 

function. Since the primary goal in this research is calculating the “Extraversion” of each person, only 24 

questions related with this trait are kept. Since 0 values represent the missing values, each entry 

containing 0 is removed. Reverse-scored items in the dataset have already been recoded during the 

respondent's completion of the inventory. The recoding involved swapping the values of 1 and 5, 2 and 4, 

and keeping 3 unchanged, without further recoding needed. 

3 Method Description 

3.1 Method Selection 

In the field of structural equation modeling (SEM), the exploration of the search space to improve 

models, fitted in “lavaan” functions, is often accomplished using metaheuristic algorithms. These 

algorithms provide a powerful means to solve optimization problems by utilizing a binary indicator vector 

to represent the model's identified parameters. PSO is chosen as the metaheuristic algorithm for exploring 

the search space and improving fitted lavaan models. As it was mentioned before,it is a population-based 

optimization algorithm that draws inspiration from the social behavior of bird flocking or fish schooling. 

It simulates the movement of particles in a multi-dimensional space, where each particle represents a 

potential solution or model specification. The particles iteratively adjust their positions and velocities 

based on their own best-known solution (personal best) and the best-known solution of the entire swarm 

(global best). 

The PSO-SEM method begins with an initial fitted lavaan model and a search table that lists 

candidate parameters and their possible modifications. The objective criterion for the search is typically 

based on fit indices such as the standardized root mean square residual (SRMR), comparative fit index 

(CFI), and root mean square error of approximation (RMSEA). The method aims to find a model 

specification that maximizes the goodness of fit while considering model parsimony. The algorithm 

operates in iterations called generations. In each generation, the particles in the swarm update their 

velocities and positions based on mathematical formulas that incorporate the personal best and global best 

solutions. The number of particles is specified with the algorithm parameters, and it is called population. 

The velocities guide the particles towards potentially better model specifications in the search space. The 

binary indicator vector, representing the identified parameters, is modified based on the particle's 
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position. To ensure the search process explores the solution space effectively, a logistic transformation is 

applied to the velocities, converting them into the range of probabilities. This transformation allows a 

transition between including and excluding parameters in the model specification. Additionally, a 

penalization factor (lambda) is introduced to balance the importance of goodness of fit and model 

parsimony in the objective function. The assessment of the solution that was provided from each particle 

is evaluated with fitness values, that is determined by the objective function. Each time the particles find a 

new personal best or global best solution, there is an update on these values. This process continues for a 

predefined number of generations in which the algorithm didn’t update the solutions, allowing for 

potential improvement.  

 

PSO-SEM Pseudocode 

1. Initialize population size, number of generations and objective function parameters 

2. Define objective function 

3. Initialize the velocity and position of each particle in the population 

4. Evaluate the fitness of each particle 

5. Set the personal best and global best values to the initial fitness values of the particles 

6. Set generation = 1 

7. While the generation ≤ number of generations, do: 

8. 
Update the velocity and position of each particle using the PSO equations and the current 

pbest and gbest values. 

9. Evaluate the fitness of each particle. 

10. Update the pbest and gbest values if a particle's fitness is better than its previous best. 

11. If the gbest value has improved compared to the previous generation 

12. Set generation =1 

13. Else generation = generation + 1 

14. Select the best particle as the final solution 

15. Return personal bests, fitness values, the final model, final parameters index and the best fitness 

 

At the end, the algorithm provides a list of personal best solutions, fitness values for each particle, 

the final model specification, the binary indicator vector that represent the best-found model and the best 

fitness. This model represents an improved version of the initially proposed lavaan model.   

3.2 Data Simulation and Models 

The implementation of PSO was conducted using RStudio (version 4.2.1; Gromping, 2015) with 

the use of  “lavaan” package (version 0.6-12; Rosseel, 2012) and “pso_sem_revised.R” from the 

“MetaSS” package which is available through https://gitlab.lrz.de/KarikSiemund/MetaSSGitLab, with a 

https://gitlab.lrz.de/KarikSiemund/MetaSSGitLab
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few modifications in order to fit the datasets correctly. It also requires functions from Carl F. Falk and 

Katerina M. Marcoulides (2018). For the presentation of the results, the used packages were “ggplot2” 

(version 3.4.0; Gómez-Rubio, 2017) and “plot3D” (version 3.4; C and Greenacre, 2007). Also, the 

packages “semPlot” (version 1.1.6; Epskamp, 2022) and “lavaanPlot” (version 0.6.2; Lishinski, 2021) 

were used for plotting the models path diagrams. The coding used to provide the results is available 

through https://gitlab.com/IanthiTsim/model-search-with-pso-sem. 

The starting model for the “Dark Triad” is represented in Figure 1, where M, N and P stand for 

Machiavellianism, Narcissism and Psychopathy respectively, and they are the factors (oval shape). In the 

graph there are lines with only one arrow (edge) and lines with pointing arrows in both directions. The 

variable, with the arrow pointing to it, is the dependent variable. while a line with an arrow at both ends 

indicates a covariance between the two variables. The rectangles below the factors indicate the observed 

values. 

 

Figure 1. Dark Triad Model 

More generally, the mathematical representation that expresses the Dark Triad model is: 

𝑀𝑎𝑐ℎ𝑖𝑎𝑣𝑒𝑙𝑙𝑖𝑎𝑛𝑖𝑠𝑚 =  𝑀1 +  𝑀2 +  𝑀3 +  𝑀4 +  𝑀5 +  𝑀6 +  𝑀7 +  𝑀8 +  𝑀9 

𝑁𝑎𝑟𝑐𝑖𝑠𝑠𝑖𝑠𝑚 =  𝑁1 +  𝑁2 +  𝑁3 +  𝑁4 +  𝑁5 +  𝑁6 +  𝑁7 +  𝑁8 +  𝑁9 

𝑃𝑠𝑦𝑐ℎ𝑜𝑝𝑎𝑡ℎ𝑦 =  𝑃1 +  𝑃2 +  𝑃3 +  𝑃4 +  𝑃5 +  𝑃6 +  𝑃7 +  𝑃8 +  𝑃9 

https://gitlab.com/IanthiTsim/model-search-with-pso-sem
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Similarly, for the “IPIP120” dataset, the initial model is shown in Figure 2. In this case also, F, A, 

G, AL, ES and C are the latent variables and stand for Friendliness, Gregariousness, Assertiveness, 

Activity Level, Excitement Seeking and Cheerfulness. These are the main variables that could calculate 

the “Extraversion” of a person, based on their answers on the questions mentioned as observed variables 

(e.g. I2 is the second question on the IPIP120 questionnaire). 

 

 

Figure 2. Extraversion Model from IPIP120 dataset 
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The mathematical representation that expresses the Extraversion model is: 

𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑖𝑛𝑒𝑠𝑠 =  𝐼2 +  𝐼32 +  𝐼62 +  𝐼92 

𝐺𝑟𝑒𝑔𝑎𝑟𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 =  𝐼7 +  𝐼37 +  𝐼67 +  𝐼97 

𝐴𝑠𝑠𝑒𝑟𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =  𝐼12 +  𝐼42 +  𝐼72 +  𝐼102 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐿𝑒𝑣𝑒𝑙 =  𝐼17 +  𝐼47 +  𝐼77 +  𝐼107 

𝐸𝑥𝑐𝑖𝑡𝑒𝑚𝑒𝑛𝑡 𝑆𝑒𝑒𝑘𝑖𝑛𝑔 =  𝐼22 +  𝐼52 +  𝐼82 +  𝐼112 

𝐶ℎ𝑒𝑒𝑟𝑓𝑢𝑙𝑛𝑒𝑠𝑠 =  𝐼27 +  𝐼57 +  𝐼87 +  𝐼117 

3.3 Objective Function and Hyperparameter Adjustment 

The objective function aims to assess the overall fit of a structural equation model by combining 

different fit measures and considering the trade-off between model complexity and fit. It consists of two 

main components. The first component evaluates the fit of the model based on three fit measures: SRMR, 

CFI and RMSEA. Each fit measure is transformed using the logistic function and a slope parameter. The 

transformed values are then combined using a weighted average, where 𝜆 or 𝑙𝑎𝑚𝑏𝑑𝑎 determines the 

weight given to the model fit measures. The objective is to minimize this component, indicating better fit 

when the values of SRMR, CFI, and RMSEA approach desired thresholds. The second component 

considers the model complexity by incorporating the ratio of the total number of free parameters 

(𝑡𝑜𝑡𝑎𝑙_𝑓𝑟𝑒𝑒) to the total number of parameters in the model (𝑡𝑜𝑡𝑎𝑙). This component penalizes more 

complex models, as higher values of total_free relative to total indicate greater complexity, aiming to 

promote simpler models. 

More specifically the objective function used with the PSO method is:  

𝑂𝑏𝑗 =
(1 − 𝜆)

3
∗ (1 − (

1

1 + exp(𝑠𝑙𝑜𝑝𝑒 ∗ (𝑝1 − 𝑆𝑅𝑀𝑅))
) + (

1

1 + exp(𝑠𝑙𝑜𝑝𝑒 ∗ (𝑝2 − 𝐶𝐹𝐼))
)

+ (1 −
1

1 + exp(𝑠𝑙𝑜𝑝𝑒 ∗ (𝑝3 − 𝑅𝑀𝑆𝐸𝐴))
)) + 𝜆 ∗

𝑡𝑜𝑡𝑎𝑙_𝑓𝑟𝑒𝑒

𝑡𝑜𝑡𝑎𝑙
  

where, the 𝑠𝑙𝑜𝑝𝑒 parameter determines the steepness of the function, determining how quickly the fitness 

score decreases as the fit indices deviate from the specified thresholds. A larger negative slope implies a 

steeper decline in fitness as the fit indices move away from the desired values. The 𝑝1, 𝑝2 and 𝑝3 are 

parameters that represent the thresholds or cutoff values for the SRMR, CFI, and RMSEA fit measures 

respectively (Hu and Bentler, 1999). These thresholds are used to determine the level of acceptability for 

each fit measure, and by specifying these values, the objective function assigns different weights to the fit 

indices based on their relative importance in model evaluation.  
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The initial hyperparameters values selected are: 

𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒔𝒍𝒐𝒑𝒆 𝝀 

0.08 0.95 0.06 -55 0.5 

The 𝑝1, 𝑝2 and 𝑝3 values were chosen based on the work of Hu and Bentler (1999). The 𝜆 value is set to 

0.5 and 𝑠𝑙𝑜𝑝𝑒 to -55 but will be adjusted according to the needs of each model. 

Both datasets prepared and preprocessed with similar procedures. This involved selecting the 

appropriate variables, handling missing data by keeping only complete entries, and partitioning the data 

into training and testing sets. The Dark Triad dataset was split into training and validation (test) sets using 

a 60:40 ratio, while the IPIP120 dataset was further divided into a training set consisting of 1000 cases 

and a validation set consisting of 1000 cases, keeping a 50:50 ratio. Bigger sets in the IPIP120 would 

increase the complexity of the model. 

After identifying the training set, the examined model is specified, and was then fitted to the training 

data using the “cfa” lavaan function. Then the PSO-SEM algorithm was employed to explore the search 

space and optimize the fit of the model. The pso.sem.revised function was utilized, which takes the fitted 

model, an initial search space configuration and the hyperparameter values as input. Finally CFI value 

was computed to assess the model fit for each combination of hyperparameters. Additionally, the final 

model resulting from the PSO-SEM algorithm with the best fit was evaluated using the validation set to 

test its performance on unseen data. 

The selection of hyperparameters involved exploring different combinations as well as testing a 

range of values for specific parameters while keeping the remaining parameters constant. Specifically in 

the Dark Triad dataset, the search started with investigating the significance of different combinations of 

𝑝1, 𝑝2, and 𝑝3 in calculating the CFI, while keeping 𝑙𝑎𝑚𝑏𝑑𝑎 and 𝑠𝑙𝑜𝑝𝑒 steady. By systematically varying 

these parameters, the aim was to identify the impact of individual parameters on the CFI and understand 

their relative importance in the model evaluation process. In addition, a similar analysis was conducted 

for the 𝑠𝑙𝑜𝑝𝑒 and 𝑙𝑎𝑚𝑏𝑑𝑎 parameters, while using the initial values of 𝑝1, 𝑝2, and 𝑝3. The objective was 

to investigate whether increasing or decreasing these parameter values would lead to improved results in 

terms of model fit. After obtaining a general idea of the effects of individual hyperparameters, a more 

extensive testing phase was initiated to identify the optimal values for all parameters. The optimal model 

was chosen by training the model in different seeds, since it’s a stochastic algorithm and the search for the 

best solution can be influenced by the initial conditions, ensuring that the model's performance is not 

biased by a specific seed and that the selected solution was robust and consistent across different 

initializations (e.g., splitting the dataset into training and validation sets). 

The approach to determining the hyperparameters for the IPIP120 dataset started by leveraging the 

optimal combination of hyperparameters found in the Dark Triad dataset. This initial combination, which 

demonstrated promising results in the Dark Triad analysis, was used as a starting point for the IPIP120 

dataset. By adopting this approach, the aim was to assess the transferability and generalizability of the 

selected hyperparameters across different datasets. However, recognizing that each dataset may have 

unique characteristics and requirements, further testing and refinement were conducted. The initial 
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combination of hyperparameters was systematically adjusted and evaluated by exploring a range of values 

for specific parameters while keeping the rest constant. 

4 Results 

4.1 Dark Triad Results 

All the Dark Triad model runs, employed a fixed population size of 30 and a generation count of 

50, due to model simplicity. Figure 3 shows a 3D representation of the CFI values, among the 

combinations of 𝑝1 = {0.05, 0.08, 0.1}, 𝑝2 = {0.93, 0.95, 0.98} and 𝑝3 = {0.03, 0.06, 0.09}, while 

𝑙𝑎𝑚𝑏𝑑𝑎 = 0.5 and 𝑠𝑙𝑜𝑝𝑒 =  −55. Among the parameters, 𝑝1 showed a noteworthy influence on the 

model's fit, since higher values of consistently yielded better CFI results. Similarly, 𝑝2 demonstrated a 

strong positive relationship with CFI. In contrast, he specific values of 𝑝3 had relatively less impact on 

CFI. More precisely, the nodes that are diamond shaped in the figure are the combinations that provided 

the best 5 results, where the final model CFI value was ~0.79, indicating that there is still potential for 

further improvement. 

 

 

Figure 3. 3D result representation for different 𝑝1,𝑝2 and 𝑝3 parameter combination 

 



Ianthi A. Tsimeki 

Automated specification search using meta-heuristics 

15 

 

To further explore the influence of different combinations of slope and lambda on CFI, there was 

some extra analysis where the combinations of 𝑠𝑙𝑜𝑝𝑒 = {−30, −55, −70} and 𝑙𝑎𝑚𝑏𝑑𝑎 = {0.1,0.25,0.5} 

where tested, while the rest parameters are equal to the initial. Figure 4 visualizes the relationship 

between these different settings. 

 

Figure 4. Result representation for different combinations of 𝐿𝑎𝑚𝑏𝑑𝑎 and 𝑆𝑙𝑜𝑝𝑒 

When further decreasing the 𝑠𝑙𝑜𝑝𝑒 from its initial -55 value, the CFI worsens, suggesting that the 

optimal slope is higher. Additionally, the impact of lambda appeared to be less pronounced, with similar 

CFI values observed across different lambda levels.  

Keeping in mind that both 𝑝1 and 𝑠𝑙𝑜𝑝𝑒 parameters exhibited strong associations with CFI values, 

further investigations were conducted by exploring combinations involving these parameters. In this run 

turn, the constant parameters are 𝑝2 = 0.98, 𝑝3 = 0.09 and 𝑙𝑎𝑚𝑏𝑑𝑎 = 0.25, while 𝑝1 = {0.1,0.12,0.15} 

and 𝑠𝑙𝑜𝑝𝑒 = {−30, −25, −20}. This range of values could assist in finding the right place to search for 

the most suitable parameters for this model. The representation of the results is shown in Figure 5, the the 

influence of 𝑝1 and 𝑠𝑙𝑜𝑝𝑒 on the model's fit, is highlighted. According to the plot, higher values of 𝑝1 and 

a less negative slope seem to have a positive impact on the CFI scores. More specifically, it can be 

observed that when 𝑝1 = 0.15, the CFI gets the lower scores regardless the 𝑠𝑙𝑜𝑝𝑒 value, but 0.1 and 0.12 

present similar scores, indicating a good value for this parameter. The impact of the 𝑠𝑙𝑜𝑝𝑒 parameter 

indicates that exploring less negative values, may lead to improved model, since the CFI keeps increasing 

when increasing this parameter. 

After obtaining an overview of the parameters effect, in the final model, it is noticed that a further 

search is needed for 𝑙𝑎𝑚𝑏𝑑𝑎 and 𝑠𝑙𝑜𝑝𝑒 values. For this analysis, 𝑝1 = 0.1, 𝑝2 = 0.98 and 𝑝3 = 0.09, 
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which are the values that presented the best results. Since 𝑠𝑙𝑜𝑝𝑒 seems to have bigger impact in the 

model, the analysis starts by keeping constant 𝑙𝑎𝑚𝑏𝑑𝑎 = 0.25. 

 

 

Figure 5. Result representation for different combinations of 𝑝1 and 𝑆𝑙𝑜𝑝𝑒 

In Figure 6, the measurement results for 𝑠𝑙𝑜𝑝𝑒 values that ranging from -25 to -15 are presented. 

The SRMR and RMSEA values hover around 0.06, indicating relatively similar fit across the slope range. 

Consequently, it is difficult to discern which 𝑠𝑙𝑜𝑝𝑒 value fits better, based on these measures alone. In the 

other hand, there are notable variations when considering the CFI scores, and more specifically when 

𝑠𝑙𝑜𝑝𝑒 = {−20, −19, −18}. Despite that the presence when 𝑠𝑙𝑜𝑝𝑒 =  −19, it is important to note that the 

CFI score at -20 is relatively close and significantly higher compared to -18. While the difference 

between -19 and -20 may not be substantial, the larger discrepancy between -20 and -18 further supports 

the notion that -20 is the optimal 𝑠𝑙𝑜𝑝𝑒 value for the model. 

The next step is to identify the value of 𝑙𝑎𝑚𝑏𝑑𝑎 that gives the best model fit. In Figure 7, the 

results are presented for 𝑙𝑎𝑚𝑏𝑑𝑎 values ranging from 0.15 to 0.28, since in previous analysis the higher 

CFI appeared close to 0.25. In this graph, SRMR and RMSEA are also overlapping, while they take 

values around 0.06. Based on the CFI values, it must be noted that even though it appears that smaller 

values tend to give better fit measures, there were issues with model convergence for lambda values of 

0.17 and 0.19, requiring manual intervention to force the model to converge. As a result, the reliability of 

the measurement results for these lambda values may be compromised. 

Furthermore, while a lambda value of 0.18 also produced a relatively low fit measure, it is near the 

subsequent lambda value of 0.20, which performed significantly better. Considering this, the lambda 
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value of 0.20 can be regarded as the optimal choice, as it balances both a good fit and a more stable model 

convergence. The analytical results are available in A.1 appendix, where any values marked in red 

indicate a forced convergence, hence an unreliable result. 

 

Figure 6. Measurements based on different 𝑆𝑙𝑜𝑝𝑒 values 

  

To account for the stochastic nature of the PSO-SEM algorithm, a robust approach was adopted to ensure 

the reliability of the results. The top three models, based on their CFI values, were selected for further 

evaluation.  

Model 𝑝1 𝑝2 𝑝3 𝑙𝑎𝑚𝑏𝑑𝑎 𝑠𝑙𝑜𝑝𝑒 Average CFI 

Model 1 0.1 0.98 0.09 0.2 -20 0.862636 

Model 2 0.08 0.95 0.06 0.25 -30 0.869909 

Model 3 0.08 0.95 0.06 0.25 -55 0.852182 

Table 1. Average of models in different seeds 

To assess their performance across different random seeds, each of the top models was executed multiple 

times. The average of their results was calculated to determine the most suitable parameter selection. 
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Table 1 presents the results of the procedure where Model 1 and Model 2 give the highest average CFI 

values, but Model 2 is slightly better. 

 

 

Figure 7. Measurements based on different 𝑙𝑎𝑚𝑏𝑑𝑎 values 

4.2 Extraversion Model Results 

The Extraversion Model is more complex than the Dark Triad model, resulting to way higher 

computational time. For these reason, alternative population sizes and generation counts were considered.  

Population Generation CFI Time 

30 10 0.899 > 6 hours 

15 25 0.953 > 12 hours 

15 10 0.899 ~ 40 minutes 

            Table 2. Computational Time for population and generation combinations 

Table 2 provides an overview of the computational time required for different combinations of 

population size and generation count with the initial hyperparameters. Although a higher population size 

of 15 and a generation count of 25 provide a higher CFI value, the computational time associated with 
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this configuration is significantly longer, exceeding 12 hours. Given the practical constraints of the 

research, conducting an extensive analysis with such computational demands is not feasible. To address 

this limitation, a population size of 15 and a generation count of 10 were chosen as a more efficient 

alternative. Despite the reduced computational time, this configuration produces comparable results to a 

population size of 30 and a generation count of 10, as indicated by the similar CFI values.  

When 𝑠𝑙𝑜𝑝𝑒 = {−55, −40, −30, −20} combined with the initial values, the CFI results remains 

the same and equal to 0.9, meaning that this parameter doesn’t affect the training of this specific dataset. 

The same results were given when trying 𝑝1 = [0.03,0.09] or 𝑝2 = [0.93,0.99] or 𝑝3 = [0.03,0.09], 

while keeping the rest of the parameters steady. 

On the other hand, Figure 8 illustrates the impact of changing the 𝑙𝑎𝑚𝑏𝑑𝑎 parameter on the fit 

measures (CFI, SRMR, and RMSEA). As 𝑙𝑎𝑚𝑏𝑑𝑎 values increase beyond 0.4, there is a noticeable 

deterioration in the fit of the model, as indicated by lower CFI values and higher SRMR and RMSEA 

values.

 

Figure 8. Measurements based on different 𝑙𝑎𝑚𝑏𝑑𝑎 values 

 It is noticed that for 𝑙𝑎𝑚𝑏𝑑𝑎 = 0.4 the measurements achieve the best values, but the result was 

an output of a forced convergence, therefore it is not reliable. Beside this value, both 𝑙𝑎𝑚𝑏𝑑𝑎 = 0 and 

𝑙𝑎𝑚𝑏𝑑𝑎 = 0.1 give the best results among the rest values, suggesting lower values for this parameter. 

The extensive list can be found on A.4. appendix. After identifying the top 3 models, their performance 

was evaluated on various training and test splits to assess their generalization capabilities. Table 3 

presents the model parameters and their final CFI, where Model 1 has the highest average CFI value, 

which also was the one with the less convergence errors. 
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Model 𝑝1 𝑝2 𝑝3 𝑙𝑎𝑚𝑏𝑑𝑎 𝑠𝑙𝑜𝑝𝑒 Average CFI 

Model 1 0.08 0.95 0.06 0.1 -55 0.964364 

Model 2 0.1 0.98 0.09 0.2 -20 0.963 

Model 3 0.08 0.95 0.06 0.3 -20 0.9202 

Table 3. Average of models in different seeds 

4.3 More Models 

The parameters that yielded the best results for the Extraversion Model were also used for 

analyzing other aspects of the IPIP120 dataset. The chosen parameters are: 

 

𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒔𝒍𝒐𝒑𝒆 𝝀 

0.08 0.95 0.06 -55 0.1 

 

and were employed in examining four models that can be formed with the rest of the IPIP120 questions. 

The new models are, the Neuroticism model, which explores neurotic tendencies based on the 

corresponding questions: 

𝐴𝑛𝑥𝑖𝑒𝑡𝑦 =  𝐼1 +  𝐼31 +  𝐼61 +  𝐼91 

𝐴𝑛𝑔𝑒𝑟 =  𝐼6 +  𝐼36 +  𝐼66 +  𝐼96 

𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  𝐼11 +  𝐼41 +  𝐼71 +  𝐼101 

𝑆𝑒𝑙𝑓 𝐶𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 =  𝐼16 +  𝐼46 +  𝐼76 +  𝐼106 

𝐼𝑚𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  𝐼21 +  𝐼51 +  𝐼81 +  𝐼111 

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝐼26 +  𝐼56 +  𝐼86 +  𝐼116 

achieved a CFI of 0.969. 

The Openness to Experience model: 

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =  𝐼3 +  𝐼33 +  𝐼63 +  𝐼93 

𝐴𝑟𝑡𝑖𝑠𝑡𝑖𝑐 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑠 =  𝐼8 +  𝐼38 +  𝐼68 +  𝐼98 

𝐸𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 =  𝐼13 +  𝐼43 +  𝐼73 +  𝐼103 

𝐴𝑑𝑣𝑒𝑛𝑡𝑢𝑟𝑜𝑢𝑠𝑛𝑒𝑠𝑠 =  𝐼18 +  𝐼48 +  𝐼78 +  𝐼108 

𝐼𝑛𝑡𝑒𝑙𝑙𝑒𝑐𝑡 =  𝐼23 +  𝐼53 +  𝐼83 +  𝐼113 

𝐿𝑖𝑏𝑒𝑟𝑎𝑙𝑖𝑠𝑚 =  𝐼28 +  𝐼58 +  𝐼88 +  𝐼118 
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which achieved a CFI of 0.955. The specific model needed several reruns on different seeds, because on 

the first tries it didn’t converge, hence the estimates would be unreliable. 

The Agreeableness model: 

𝑇𝑟𝑢𝑠𝑡 =  𝐼4 +  𝐼34 +  𝐼64 +  𝐼94  

𝑀𝑜𝑟𝑎𝑙𝑖𝑡𝑦 =  𝐼9 +  𝐼39 +  𝐼69 +  𝐼99  

𝐴𝑙𝑡𝑟𝑢𝑖𝑠𝑚 =  𝐼14 +  𝐼44 +  𝐼74 +  𝐼104  

𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  𝐼19 +  𝐼49 +  𝐼79 +  𝐼109  

𝑀𝑜𝑑𝑒𝑠𝑡𝑦 =  𝐼24 +  𝐼54 +  𝐼84 +  𝐼114 

 𝑆𝑦𝑚𝑝𝑎𝑡ℎ𝑦 =  𝐼29 +  𝐼59 +  𝐼89 +  𝐼119 

which resulted in a CFI of 0.979. 

And finally, the Conscientiousness model: 

𝑆𝑒𝑙𝑓 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝐼5 +  𝐼35 +  𝐼65 +  𝐼95  

𝑂𝑟𝑑𝑒𝑟𝑙𝑖𝑛𝑒𝑠𝑠 =  𝐼10 +  𝐼40 +  𝐼70 +  𝐼100  

𝐷𝑢𝑡𝑖𝑓𝑢𝑙𝑛𝑒𝑠𝑠 =  𝐼15 +  𝐼45 +  𝐼75 +  𝐼105  

𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡 𝑆𝑡𝑟𝑖𝑣𝑖𝑛𝑔 =  𝐼20 +  𝐼50 +  𝐼80 +  𝐼110 

 𝑆𝑒𝑙𝑓 𝐷𝑖𝑠𝑐𝑖𝑝𝑙𝑖𝑛𝑒 =  𝐼25 +  𝐼55 +  𝐼85 +  𝐼115 

 𝐶𝑎𝑢𝑡𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 =  𝐼30 +  𝐼60 +  𝐼90 +  𝐼120 

with a CFI value equal to 0.98, which is the highest among the rest of IPIP120 models.  

Overall and based on the CFI values, the models have relatively good fit, with values greater than 

0.95, indicating that the specified models capture a substantial proportion of the covariance patterns 

between the observed variables.  

5  Conclusion  

The automated specification search using the PSO provides a valuable contribution to effectively 

identifying a good model, which captures the latent variables relationships within a dataset. It efficiently 

explores the solution space and finds near-optimal models. The search process is guided by fit measures 

that evaluate the model fit, such as SRMR, CFI, and RMSEA. By integrating these fit measures into the 

objective function, the algorithm aims to find models that best align with the observed data while 

considering the trade-off between model complexity and fit, through the 𝑙𝑎𝑚𝑏𝑑𝑎 hyperparameter. 

The PSO algorithm optimizes the hyperparameters, including the cut off values for each fit measure, 

the steepness of the function and the penalty parameter, which play crucial roles in capturing the latent 

variables and factors within the dataset. By exploring different combinations and values of these 
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hyperparameters, the algorithm identifies the settings that result in a model fit. The contribution of the 

automated specification search lies in its ability to efficiently search the solution space and identify the 

optimal model that best captures the underlying relationships and structures in the data. Overall, the 

automated specification search using the PSO metaheuristics algorithm provides a powerful tool to 

uncover latent variables within a dataset, given that there is the appropriate hyperparameter tunning. 

6 Discussion 

6.1 Findings and Insights 

The integration of PSO with SEM provides a novel approach for model identification with 

hyperparameter adjustment. By combining the strengths of these two methodologies, exploration of 

complex relationships and discovery of latent variables in data, can be efficient. The use of PSO allows 

for effective optimization of the model's fit, while SEM provides a comprehensive framework for 

examining underlying structures and causal pathways. The findings from the analysis of the Dark Triad 

and IPIP120 datasets revealed the impact of specific hyperparameters and their combinations on the 

examined dataset. It was highlighted that 𝑙𝑎𝑚𝑏𝑑𝑎, 𝑠𝑙𝑜𝑝𝑒 and in some cases the SRMR cut off value (𝑐1), 

influence the CFI performance the most. The transferability of the selected hyperparameters, was 

examined across different datasets using the optimal values from the Dark Triad analysis as a starting 

point for the IPIP120 dataset. While the initial combination showed promising results, further testing and 

refinement were conducted to ensure the applicability of the hyperparameters to different contexts. This 

approach demonstrated the need for dataset-specific exploration and adjustment to achieve optimal model 

fit. 

6.2 Limitations 

There are several limitations that should be considered in this research. Due to time constraints, it 

was not possible to exhaustively explore all possible hyperparameter combinations. This limitation 

restricts the comprehensive evaluation of different settings and may have limited the identification of the 

optimal configuration for the models. Additionally, it should be noted that in some cases, the lavaan 

package required the use of the "optim.force.converged = TRUE" parameter to obtain convergence and 

view the results, indicating potential issues with model convergence, and forcing the result, that could be 

inaccurate. Also, more complex models, that could potentially provide deeper insights into the underlying 

relationships, require at least 12 hours for a single run.  
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APPENDIX A 

A.1. Dark Triad Results 

 

  

𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒔𝒍𝒐𝒑𝒆 𝛌 𝑪𝑭𝑰 

0.08 0.95 0.06 -30 0.25 0.8975447 
0.08 0.95 0.06 -55 0.25 0.8898366 

0.08 0.95 0.06 -30 0.5 0.8888708 
0.08 0.95 0.06 -30 0.1 0.8669237 

0.1 0.98 0.09 -20 0.17 0.864 
0.1 0.98 0.09 -20 0.19 0.864 

0.08 0.95 0.06 -55 0.5 0.8550302 
0.12 0.98 0.09 -20 0.25 0.8512312 

0.1 0.98 0.09 -25 0.25 0.8393729 
0.1 0.98 0.09 -20 0.25 0.8379451 

0.1 0.98 0.09 -30 0.25 0.8303871 
0.12 0.98 0.09 -25 0.25 0.8171378 

0.12 0.98 0.09 -30 0.25 0.8086524 
0.15 0.98 0.09 -20 0.25 0.7965048 

0.08 0.95 0.06 -55 0.1 0.7762625 
0.08 0.95 0.06 -70 0.1 0.7762625 

0.08 0.95 0.06 -70 0.25 0.7762625 
0.08 0.95 0.06 -70 0.5 0.7762625 

0.15 0.98 0.09 -25 0.25 0.782408 
0.15 0.98 0.09 -30 0.25 0.781902 

0.1 0.98 0.09 -20 0.16 0.87334 
0.1 0.98 0.09 -20 0.15 0.86508 

0.1 0.98 0.09 -20 0.21 0.85231 
0.1 0.98 0.09 -19 0.25 0.85045 

0.1 0.98 0.09 -20 0.2 0.85042 
0.1 0.98 0.09 -20 0.23 0.84914 

0.1 0.98 0.09 -20 0.25 0.84485 
0.1 0.98 0.09 -20 0.22 0.83781 

0.1 0.98 0.09 -15 0.25 0.83732 
0.1 0.98 0.09 -25 0.25 0.83407 

0.1 0.98 0.09 -21 0.25 0.83039 
0.1 0.98 0.09 -23 0.25 0.83039 

0.1 0.98 0.09 -20 0.18 0.83025 

𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒔𝒍𝒐𝒑𝒆 𝛌 𝑪𝑭𝑰 

0.1 0.98 0.09 -20 0.27 0.81965 
0.1 0.98 0.09 -17 0.25 0.81842 

0.1 0.98 0.09 -20 0.26 0.81172 
0.1 0.98 0.06 -55 0.5 0.79357 

0.1 0.98 0.09 -55 0.5 0.79357 
0.05 0.95 0.09 -55 0.5 0.79288 

0.08 0.98 0.09 -55 0.5 0.78731 
0.1 0.95 0.06 -55 0.5 0.78665 

0.08 0.98 0.06 -55 0.5 0.78638 
0.1 0.93 0.03 -55 0.5 0.77626 

0.1 0.95 0.03 -55 0.5 0.77626 
0.1 0.93 0.06 -55 0.5 0.77552 

0.08 0.93 0.06 -55 0.5 0.77513 
0.08 0.95 0.03 -55 0.5 0.76988 

0.1 0.93 0.09 -55 0.5 0.76988 
0.1 0.95 0.09 -55 0.5 0.76988 

0.08 0.95 0.09 -55 0.5 0.76744 
0.1 0.98 0.03 -55 0.5 0.73254 

0.05 0.93 0.06 -55 0.5 0.12746 
0.05 0.98 0.06 -55 0.5 0.11025 

0.05 0.98 0.03 -55 0.5 0.10464 
0.05 0.95 0.03 -55 0.5 0.10397 

0.05 0.93 0.03 -55 0.5 0.09654 
0.05 0.95 0.06 -55 0.5 0.09654 

0.1 0.98 0.09 -20 0.24 0.8415 
0.1 0.98 0.09 -20 0.28 0.7965 

0.05 0.98 0.09 -55 0.5 0.7819 
0.08 0.98 0.03 -55 0.5 0.06891 

0.08 0.93 0.03 -55 0.5 0.77 
0.08 0.95 0.06 -55 0.5 0.77 

0.05 0.93 0.09 -55 0.5 0.77 
0.08 0.93 0.09 -55 0.5 0.77 
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A.2. Different Seeds Dark Triad  

 

 

 

 

 

 

 

 

A.3.Extraversion Model Results 

𝑻𝒓𝒚 Model 1 

1 0.874 
2 0.862 
3 0.853 

4 0.869 
5 0.884 

6 0.862 
7 0.836 

8 0.86 
9 0.901 

10 0.837 
11 0.851 

𝑻𝒓𝒚 Model 2 

1 0.866 
2 0.877 
3 0.879 

4 0.888 
5 0.877 

6 0.86 
7 0.849 

8 0.898 
9 0.866 

10 0.863 
11 0.846 

  

𝑻𝒓𝒚 Model 3 

1 0.851 
2 0.872 
3 0.857 

4 0.806 
5 0.854 

6 0.835 

 7 0.87 

8 0.866 
9 0.87 

10 0.858 
11 0.835 

  

𝒑𝟏 𝒑𝟐 𝒑𝟑 𝝀 𝒔𝒍𝒐𝒑𝒆 𝒈𝒆𝒏 𝒑𝒐𝒑 𝑪𝑭𝑰 

0.08 0.95 0.06 0.5 -40 10 15 0.899 
0.08 0.95 0.06 0.7 -55 10 15 0.899 
0.08 0.95 0.06 0.5 -55 10 15 0.899 

0.08 0.95 0.06 0 -55 10 15 0.97 
0.08 0.95 0.06 0.1 -55 10 15 0.97 

0.08 0.95 0.03 0.1 -55 10 15 0.97 
0.08 0.95 0.04 0.1 -55 10 15 0.97 

0.08 0.95 0.05 0.1 -55 10 15 0.97 
0.08 0.95 0.06 0.1 -55 10 15 0.97 

0.08 0.95 0.07 0.1 -55 10 15 0.97 
0.08 0.95 0.08 0.1 -55 10 15 0.97 

0.08 0.95 0.09 0.1 -55 10 15 0.97 
0.03 0.95 0.06 0.1 -55 10 15 0.97 

0.04 0.95 0.06 0.1 -55 10 15 0.97 
0.05 0.95 0.06 0.1 -55 10 15 0.97 

0.06 0.95 0.06 0.1 -55 10 15 0.97 
0.07 0.95 0.06 0.1 -55 10 15 0.97 

0.08 0.95 0.06 0.1 -55 10 15 0.97 
0.09 0.95 0.06 0.1 -55 10 15 0.97 

0.08 0.94 0.06 0.1 -55 10 15 0.97 
0.08 0.95 0.06 0.1 -55 10 15 0.97 

0.08 0.96 0.06 0.1 -55 10 15 0.97 
0.08 0.97 0.06 0.1 -55 10 15 0.97 

0.08 0.98 0.06 0.1 -55 10 15 0.97 
0.08 0.99 0.06 0.1 -55 10 15 0.97 

𝒑𝟏 𝒑𝟐 𝒑𝟑 𝝀 𝒔𝒍𝒐𝒑𝒆 𝒈𝒆𝒏 𝒑𝒐𝒑 𝑪𝑭𝑰 

0.1 0.98 0.09 0.2 -20 10 15 0.972 

 0.08 0.95 0.06 0.4 -55 10 15 0.972 

 0.08 0.95 0.06 0.4 -55 10 15 0.972 

 0.1 0.98 0.09 0.2 -20 10 30 0.969 

 0.08 0.98 0.08 0.2 -20 10 15 0.969 
0.08 0.98 0.08 0.2 -30 10 15 0.969 

0.08 0.99 0.06 0.2 -55 10 15 0.969 

 0.08 0.95 0.06 0.2 -55 10 15 0.968 

0.08 0.96 0.06 0.2 -55 10 15 0.968 
0.08 0.97 0.06 0.2 -55 10 15 0.968 

0.08 0.98 0.06 0.2 -55 10 15 0.968 
0.08 0.95 0.06 0.2 -55 10 15 0.968 

0.08 0.93 0.06 0.1 -55 10 15 0.968 
0.1 0.98 0.09 0.2 -20 25 30 0.965 

0.1 0.98 0.09 0.2 -20 25 15 0.963 
0.08 0.95 0.06 0.3 -55 10 15 0.963 

0.08 0.95 0.06 0.5 -55 50 30 0.956 
0.08 0.95 0.06 0.5 -55 50 30 0.956 

0.08 0.95 0.06 0.5 -55 25 30 0.956 
0.08 0.95 0.06 0.5 -55 25 15 0.953 

0.08 0.95 0.06 0.5 -55 15 30 0.899 

 0.08 0.95 0.06 0.5 -55 10 30 0.899 

0.08 0.95 0.06 0.5 -55 10 15 0.899 
0.08 0.95 0.06 0.5 -20 10 15 0.899 

0.08 0.95 0.06 0.5 -30 10 15 0.899 
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A.4. Different Seeds Extraversion Model 

 

 

 

 

 

 

 

  

𝑻𝒓𝒚 𝑬𝟏 

1 0.956 
2 0.966 
3 0.969 

4 0.963 
5 0.97 

6 0.961 

 7 0.963 

8 0.972 

 9 0.957 

10 0.969 
11 0.962 

  

𝑻𝒓𝒚 𝑬2 

1 0.964 
2 0.966 
3 0.956 

4 0.969 
5 0.966 

 6 0.967 
7 0.949 

8 0.974 
9 0.959 

10 0.963 
11 0.969 

  

𝑻𝒓𝒚 𝑬𝟑 

1 0.939 

X 2 0.896 

3 0.964 

0.964 

0.964 

 

4 0.878 

5 0.9 
6 0.944 

7 0.88 
8 0.963 

 9 0.95 
10 0.888 

11 0.957 
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