View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        Simplicial Complexes and Persistent Homology

        Thumbnail
        View/Open
        thesis.pdf (530.6Kb)
        Publication date
        2020
        Author
        Griend, R. van de
        Metadata
        Show full item record
        Summary
        Topological data analysis is a novel field of mathematics in which topology is applied to problems in data analysis. In this paper we will study a particular tool from topological data analysis called persistent homology. First, we develop the theory of simplicial complexes and their topological counterparts polyhedra. We then define a particular type of homology theory called simplicial homology which, intuitively, captures n-dimensional `holes' of polyhedra. As a motivating example for the definition of persistence homology, we will consider the Cech complex of a point cloud X in euclidean space. The Cech complex is constructed as a parametrized simplicial complex, that for each choice of a parameter gives a simplicial homology. By looking at how this simplicial homology changes as we go from one choice of the parameter to another, we then define the persistence homology of a filtration. The persistence diagram of a filtration turns out to be a particularly useful representation of persistence homology. Furthermore the space of all persistence diagrams admits a metric called the bottleneck distance with which we can compare the persistence diagrams of different filtrations. Lastly, we show an important result called The Bottleneck Stability which ensures that the bottleneck distance is stable with respect to small perturbations of the filtration.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/36446
        Collections
        • Theses
        Utrecht university logo