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Abstract

Topological data analysis is a novel field of mathematics in which topology is applied to problems in data
analysis. In this paper we will study a particular tool from topological data analysis called peristent homology.

First, we develop the theory of simplicial complexes and their topological counterparts polyhedra. We
then define a particular type of homology theory called simplicial homology which, intuitively, captures
n-dimensional ‘holes’ of polyhedra.

As a motivating example for the definition of persistence homology, we will consider the Čech complex of a
point cloud X ⊆ RN . The Čech complex is constructed as a parametrized simplicial complex, that for each
choice of a parameter gives a simplicial homology.

By looking at how this simplicial homology changes as we go from one choice of the parameter to another,
we then define the persistence homology of a filtration. The persistence diagram of a filtration turns out to
particularly useful representation of persistence homology. Furthermore the space of all persistence diagrams
admits a metric called the bottleneck distance by which we can compare the persistence diagrams of different
filtrations.

Lastly, we show an important result called The Bottleneck Stability which ensures that the bottleneck distance
is stable with respect to small perturbations of the filtration.
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Chapter 1

Simplicial Complexes and
Polyhedra

1.1 Simplicial Complexes

The definition of a topological space is very general and allows for spaces which might be too
“wild” to be of direct interest. A general idea in topology is to define a certain structure on
topological spaces, such as manifolds or CW-complexes, that restrict the class of spaces to
something more manageable.

In the following discussion, we define simplicial complexes as abstract combinatorial objects that
will form the category Csim of simplicial complexes. We then relate this abstract definition
to topological spaces, by defining its geometric realization. Those topological spaces that are
homeomorphic to a geometric realization will form the category P of polyhedra which will be
the central object of study. In this section, we follow the exposition in [4, Chapters 2 & 3].

We begin our discussion by defining the objects of Csim.

Definition 1.1.1. A simplicial complex is pair (K,Φ) given by a finite1 set Φ called the
vertex set and a set K of subsets in Φ, such that:

� For all x ∈ Φ we have that {x} ∈ K

� If σ ∈ K, then for all non-empty subsets τ ⊆ σ we have that τ ∈ K.

The elements in Φ are called the vertices of K, and the elements σ ∈ K are called the simplices
of K. The non-empty subsets of a simplex σ are called the faces of σ. If a simplex contains
n− 1 elements, we say that it is an n-simplex. A subset L ⊆ K is called a subcomplex when
L is also a simplicial complex.

1It is possible to define infinite simplicial complexes, but in applications, we only consider finite data sets. As
such, this definition will be general enough.

1
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Figure 1.1: A pictorial representation of a simplicial complex.

Similar to how notate topological spaces, we will write K for the simplicial complex (K,Φ)
whenever we do not need to specify any particular vertex set.

Example 1.1.2. An example of a simplicial complex is

K = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {2, 4}, {3, 4}, {4, 1}, {1, 2, 4}}

whose vertex set is just the set of integers {1, 2, 3, 4}. We can pictorially represent this simplicial
complex as in figure 2.2. 4

We now define the morphisms in Csim.

Definition 1.1.3. A simplicial map on simplicial complexes (K,Φ), (L,Ψ) is a function f :
K → L such that for all σ = {x0, x1, ..., xn} ∈ K we have that f(σ) = {f(x0), ..., f(xn)} ∈ L.
That is, f is determined by how it maps the vertices Φ to Ψ and is such that it maps simplices
of K to simplices of L.

During the rest of this section, we will build some more theory around simplicial complexes,
and in particular we will define its geometric realization.

Definition 1.1.4. Two abstract simplicial complexes (K,Φ) and (L,Ψ) are said to be isomor-
phic if there exists a bijective simplicial map f : K → L.

Given a simplicial complex K we can define a new simplicial complex whose vertex set is given
by K. That is, the simplices of K will now form the vertices of another simplicial complex
which we call the barycentric subdivision of K.

Definition 1.1.5. The barycentric subdivision of a simplicial complex K is the simplicial
complex B(K) defined by taking K as its vertex set and defining B(K) as the collection of
nonempty subsets S = {σi0 , ..., σin} of K such that:

S ∈ B(K)⇔ σi0 ⊆ ... ⊆ σin

This construction turns out to be useful later on when we prove the Nerve Theorem 3.1.4.

Example 1.1.6. Just as with any other simplicial complex, we can pictorially represent a
barycentric subdivision B(K) of K. Doing this with K the simplicial complex from example 1.1.2
gives figure 1.2. We see that the simplices of K have now become the vertices of B(K). 4
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Figure 1.2: A pictorial representation of the barycentric subdivision B(K) of a
simplicial complex K. Each vertex of B(K) is a simplex of K.

To describe local behaviour in a simplicial complex K, it might be useful to consider all simplices
in K that contain a certain vertex. These simplices form a set, but not nescessarily a simplicial
complex, called a star. Since simplices are just sets of vertices, we might as well look at the star
of a whole simplex, by looking at those simplices that contain its vertices.

Definition 1.1.7. The star of a simplex τ in a simplicial complex K is defined as the set
St(τ) = { σ ∈ K | τ ⊆ σ }. The closed star St(τ) is the smallest subcomplex of K that contains
St(τ).

When we collect all the faces τ of a simplex σ we get a new simplicial complex called the
simplicial complex generated by σ.

Definition 1.1.8. The simplicial complex generated by a simplex σ ∈ K is defined as:

σ := σ ∪ P(σ) \ ∅

We see that σ forms the smallest simplicial complex that contains σ. We relate this definition
to the closed star of a simplex by the following result:

Lemma 1.1.9. Let St(τ) be the star of some simplex τ . Then:

St(τ) =
⋃

σ∈St(τ)

σ

Proof. The inclusion ?(τ) ⊆
⋃
σ∈St(τ) σ is clear. Thus we only need to prove that

⋃
σ∈St(τ) σ ⊆

St(τ). Any element ρ ∈
⋃
σ∈St(τ) σ is the face of some σ ∈ St(τ). Since simplicial complexes are

closed under taking faces, σ ∈ St(τ).

We will also need the product of two simplicial complexes. Since the vertex sets of simplicial
complexes are finite, the vertices always admit an ordering.

Definition 1.1.10. Let (K,Φ) and (L,Ψ) be simplicial complexes, and let Ψ and Φ admit a
total order. We define Ψ × Φ with the lexicographic ordering induced by Ψ and Φ. Using this
ordering, K × L is defined to be the simplicial complex whose vertices are Φ × Ψ and whose
simplices are the sets:

{(x0, y0), ..., (xn, yn)}
such that {x0, ..., xn} ∈ K and {y0, ..., yn} ∈ L.
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1.2 Geometric Realization

As it stands, simplicial complexes are built up from simplices and in turn, simplices are defined
as combinations of specific vertices. There is a natural geometric interpretation of a simplicial
complex, where we envision the simplices as points, lines, triangles, tetrahedrons, etc... and the
simplicial complex as a geometric object constructed by glueing these simplices together in a
specific manner.

Each point in this geometric object, is contained in a simplex, say for example a triangle with
vertices x1, x2, x3. We can now describe this point as a linear combination

∑
λixi of these

vertices, where the coefficients λi add up to 1. This will motivate the following definition, in
which we make this notion of a “geometric interpretation” more precise.

Definition 1.2.1. Let (K,Φ) be a simplicial complex. Writing I := [0, 1] we denote by IΦ the
set of all functions p : Φ → I mapping the vertices of K to real numbers in I. For each such
function, we define its support as the finite set:

sup(p) := { σ ∈ Φ | p(σ) > 0 }

Then, the geometric realization of a simplicial complex K is the set:

|K| = { p ∈ IΦ | sup(p) ∈ K and
∑
x∈Φ

p(x) = 1 }

The connection with the preceding discussion is the following. For each vertex x ∈ Φ we define
a function x : Φ→ I by:

x(y) =

{
1 if σ = x

0 if σ 6= y
(1.2.1)

Each p ∈ |K| with support sup(p) = {x0, ..., xn} ⊆ Φ, can now be written as a linear combination
of the functions xi ∈ |K|:

p =
∑
i

λixi

where λi := p({xi}). And indeed, by definition of the geometric realization:
∑
i λi = 1.

Definition 1.2.2. Let |K| be a geometric realization of a simplicial complex K. For each
element p =

∑
i λixi ∈ |K|, we call the coefficients λi the barycentric coordinates of p.

We now define a metric on |K|.

Lemma 1.2.3. The function d : |K| × |K| → R defined as:

d(p, q) :=

√∑
x∈Φ

(p(x)− q(x))2

is a metric on the geometric realization |K| of a simplicial complex K.

Proof. Since Φ is finite, we see that d(p, q) is just the euclidean norm on the vector (p(x0) −
q(x0), ..., p(xn)− q(xn)).
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We see now that each simplicial complex K ∈ Csim, maps to a topological space |K| ∈ Top.
Similarly, we will now define a way to map each simplicial map f : K → L to a continuous map
|f | : |K| → |L| so that we get a functor | · | : Csim→ Top.

Definition 1.2.4. The geometric realization of a simplicial map f : K → L is the function
|f | : |K| → |L| defined by:

|f |(
∑
i

λixi) =
∑
i

λif(xi)

By the following theorem, which will be stated without proof but which can be found in [4,
Thm.2.2.7], |f | is indeed continuous so that | · | defines a functor Csim→ Top.

Theorem 1.2.5. Given a simplicial map f : K → L, its geometric realization |f | is continuous.

Another result that we will not prove here is the following (see [4, Thm. 3.1.1]).

Theorem 1.2.6. Given two simplicial complexes K and L the product of their geometric
realizations is homeomorphic to the geometric realization of their product:

|K × L| ' |K| × |L|

We can also consider the geometric realization of the barycentric subdivision of a simplicial
complex. As we saw in example 1.1.6, the pictorial representation of B(K) topologically looks
the same as the one for K and thus the following result will not be surprising. For a proof we
refer the reader to [4, Thm. 2.1.4].

Lemma 1.2.7. Given a simplicial complex K and its barycentric subdivision B(K), their geo-
metric realizations are homeomorphic:

|K| ' |B(K)|

As stated at the beginning of this section, we defined a structure, namely simplicial complexes,
by which we can restrict ourselves to a specific class of topological spaces called polyhedra.

Definition 1.2.8. A polyhedron is a topological space X that is homeomorphic to the geo-
metric realization |K| of some simplicial complex K. We denote by P the category of polyhedra
with continuous functions as the morphisms.

We should note that not every continuous map between polyhedra is the geometric realization
of some simplicial map, so there are many more morphisms in P than in Csim.

In the next section, we will define a topological invariant on polyhedra called homology, which
we will use to captures the “holes” in polyhedra. As it turns out, it is enough to just look at
the simplicial structure underlying the polyhedron, such that we will just define homology for
simplicial complexes.



Chapter 2

Simplicial Homology

2.1 Capturing ‘Holes’

The idea of simplicial homology, is to define an algebraic object that in some sense captures
n-dimensional holes in a polyhedron |K|. More precisely, for each dimension, we will define a
group, generated by the simplices in K, that describes each hole as an element of the group.

1 2

3

1 2

3

|K| |L|

Figure 2.1: The geometric realizations of K and L

Take for example the simplicial complex K = {{1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}} with vertex set
{1, 2, 3}. Its geometric realization can be seen in figure 2.1. As a simplicial complex it consists
simply of the three 1-simplices in the boundary of the 2-simplex {1, 2, 3} and the 0-simplices
{1}, {2}, {3}. By following the triangle along the edges we end up in the same point, so if we take
the ordering of vertices in consideration the product {1, 2}{2, 3}{3, 1} in some sense describes a
loop around the hole in K, where the ordering of the vertices indicates in which way we follow
the edge.

But what about the products {2, 3}{3, 1}{1, 2} and {3, 1}{1, 2}{2, 3}? Like {1, 2}{2, 3}{3, 1}
they describe loops around the ‘hole’ of K, but their start/end-point is different. These three
products describe the same unparametrized circle around K, so if we are trying to capture
‘holes’, it would be natural to consider these three products to be the same:

{1, 2}{2, 3}{3, 1} = {2, 3}{3, 1}{1, 2} = {3, 1}{1, 2}{2, 3} (2.1.1)

But what we see now is that each edge commutes with the other two. This suggest that the

6
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group we want to define should actually be Abelian, and that we should talk of ‘sums’ instead
of ‘products’. What we have done here, is to forget any specific parametrization of the loops to
get the unparametrized circles, also called cycles, that actually describe holes in X. For those
who are familiar with the fundamental group of a topological space, we will see that this group
is the Abelianization of the first fundamental group.

Now lets consider L = K ∪ {1, 2, 3}, such that the only difference with K ⊆ L is that the
hole surrounded by the edges in L has now become ‘filled in’ by the 2-simplex {1, 2, 3} and
disappeared. To algebraically describe this disappearance, we somehow want to ’quotient’ all
the cycles of 1-simplices in L by the 2-simplices which they bound.

2.2 Chain Groups

To make this all precise, we will first define what it means for a simplicial complex to have an
orientation.

Definition 2.2.1. Given an n-simplex σ = {x0, ..., xn} in (K,Φ), we can order its vertices
x0, ..., xn in (n+ 1)! different ways. An orientation of a simplex σ is an equivalence class of
orderings of its vertices such that:

x0, ..., xn ∼ p(x0), ..., p(xn)⇔ p is an even permutation

Thus, we say that two orderings have the same orientation when they differ by an even permu-
tation. Then we call σ together with an orientation an oriented simplex. For n > 0, each
n-simplex has two different orderings so that we can write σ = −τ when σ and τ are the same
as simplices, but have opposing orientation.

For example, we can write {1, 2, 3} = {2, 3, 1} = −{3, 2, 1}. We now define what an orientation
is on a whole simplicial complex:

Definition 2.2.2. An oriented simplicial complex is a simplicial complex whose simplices
all have an orientation.

Any total ordering of the vertices Φ of a simplicial complex K, induces an orientation on each
simplex σ ∈ K. Since we only consider finite Φ, we can make always choose an orientation on
K.

Definition 2.2.3. For each n ∈ N we define the n-th chain group Cn(K) of a simplicial
complex K as the free Abelian group generated by the n-simplices in K. The elements of Cn(K)
are called n-chains and can be written as formal sums

∑
i niσi with each σi an n-simplex of K

and ni ∈ Z.

The n-chains are the actual objects that we will use to represent holes in a simplicial complex.
Later on we will define a slight generalization of simplicial homology, where the coefficients ni
lie in any commutative ring.

Example 2.2.4. Recall the simplicial complexes K = {{1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}} and
L = K∪{1, 2, 3} that we considered in figure 2.1. We remarked that the simplices {1, 2}, {2, 3}, {3, 1}
formed the boundary of {1, 2, 3} in L, corresponded to a ‘hole’ in some way in K. In light of
this, we can define the boundary of {1, 2, 3} as the 1-chain {1, 2}+ {2, 3}+ {3, 1} in L. 4
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This motivates the following definition of the boundary homomorphism. We will define it on
chain groups by giving its value on the generators:

Definition 2.2.5. Given two chain groups Cn(K), Cn−1(K), we define the n-th boundary
homomorphism as the map

∂n : Cn(X)→ Cn−1(X) : {v0, ..., vn} 7→
∑
i

(−1)i{v0, ..., v̂i, ..., vn} (2.2.1)

for n > 0 and as ∂0 : C0(X)→ 0 for n = 0 and where {v0, ..., v̂i, ..., vn} is the simplex {v0, ..., vn}
where we removed the vertex vi.

The boundary homomorphism sends an n-simplex σ to a linear combination of its faces that
represents the boundary. The orientation that we give to simplices in the resulting n-chain ∂(σ)
is a natural orientation induced from the orientation on σ.

Example 2.2.6. Recall the simplicial complexes K = {{1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}} and
L = K∪{1, 2, 3} that we considered in figure 2.1. Now we have defined the boundary of {1, 2, 3}
in L as the 1-chain {1, 2}−{1, 3}+{2, 3} = {1, 2}+{2, 3}+{3, 1}, where we see that the induced
ordering on the simplices in the chain correspond to our intuition of how the edges of {1, 2, 3}
are ordered. 4

Heuristically, the border of a simplex ∂σ is always a closed cycle around the interior of σ and as
such, the border of a border is empty. To make this statement precise, we prove the following
lemma:

Lemma 2.2.7. The composition ∂n−1 ◦ ∂n is the zero map.

Proof. Let σ = {v0, ..., vn} an n-simplex. Notice that for j > i, the (j − 1)-th vertex in
{v0, ..., v̂i, ..., vn} is vj , so that:

∂n−1 ◦ ∂n(σ) =
∑
i

(−1)i∂n−1{v0, ..., v̂i, ..., vn}

=
∑
j<i

(−1)i(−1)j{v0, ..., v̂j , ..., v̂i, ..., vn}+
∑
j>i

(−1)i(−1)j−1{v0, ..., v̂i, ...v̂j , ..., vn}

If we swap i and j in the second summation, it cancels out with the first summation to give the
desired result.

We get a sequence of chain groups, called a chain complex, connected by the corresponding
boundary homomorphisms in the following way:

... C2 C1 C0 0∂ ∂ ∂ 0 (2.2.2)

Notice how we have omitted the indexing on the boundary homomorphisms. We will do this
when it is clear from context which map we mean.

It would be natural to look at maps between chain complexes of two simplicial complexes K
and L, induced by some simplicial map between K and L themselves.



CHAPTER 2. SIMPLICIAL HOMOLOGY 9

Definition 2.2.8. Let K and L be two simplicial complexes, and f : K → L a simplicial map.
Then we define the induced homomorphism of f as the map:

f# : Cn(K)→ Cn(L) :
∑
i

niσi 7→
∑
i

nif(σi)

Using this definition we have the following result.

Lemma 2.2.9. For an induced map f# : Cn(K)→ Cn(L), the following diagram commutes:

Cn(K), Cn−1(K)

Cn(L) Cn−1(L)

f#

∂

f#

∂

That is, ∂f# = f#∂.

Proof. Let σ = {v0, ..., vn} be a generator in Cn(K). Then:

f#∂(σ) =
∑
i

(−1)if#({v0, ..., v̂i, ..., vn})

=
∑
i

(−1)i{f(v0), ..., f(v̂i), ..., f(vn)})

= ∂(f(σ)) = ∂f#(σ)

Where the first equation follows from the linearity of f# in the generators of Cn.

2.3 Simplicial Homology Groups

For a simplicial complex K, we will now define its n-th homology group Hn(K) in terms of
quotient classes of n-chains. If a cycle is not surrounding a ‘hole’, but is actually the boundary of
a larger simplex, we would like to disregard it inside Hn(K). We have that Im(∂n) ⊆ ker(∂n−1)
by 2.2.7. Since the image and kernel of a group homomorphism are groups and subgroups of
Abelian groups are normal, the quotient of these two groups is well-defined so that the following
definition makes sense:

Definition 2.3.1. The n-th homology group of a simplicial complex K is defined as:

Hn(K) = ker(∂n)/ Im(∂n+1)

and we denote its rank by βi which we will call the n-th Betti number of K.

We can easily extend the definition to polyhedra as follows:

Definition 2.3.2. Let |K| be a polyhedron, homeomorphic to the geometric realization of a
simplicial complex K. Then its n-th homology group is defined as:

Hn(|K|) := Hn(K)
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Similar to what we did for Chain groups, we show that each simplicial map f : K → L induces
a group homomorphism on the homology groups of K and L.

Lemma 2.3.3. Every simplicial map f : K → L induces a homomorphism

f∗ : Hn(K)→ Hn(L) : [σ] 7→ [f#(σ)]

Proof. We will show that f∗ is well-defined. Let [σ] = [τ ] in Hn(K), so σ, τ ∈ ker ∂n and
σ − τ ∈ Im ∂n+1. Using 2.2.9, ∂nf#(σ) = f#∂n(σ) = 0, so f#(σ) ∈ ker ∂n ⊆ Cn(L). Similarly:
f#(τ) ∈ ker ∂n. Since σ − τ ∈ Im ∂n there exists a µ ∈ Cn(K) such that σ − τ = ∂n(µ). Thus:
∂nf#(µ) = f#∂n(µ) = f#(σ− τ) ∈ Cn(L) so f#(σ− τ) = f#(σ)− f#(τ) ∈ Im ∂n. We conclude
that f∗([σ]) = f∗([τ ]) in Hn(L). That f∗ is a homomorphism follows directly from the fact that
f# is a homomorphism.

Some basic properties of the induced homomorphism are the following:

� (fg)∗ = f∗g∗, which follows from the associativity of function composition.

� Id∗ = Id, which follows from: Id∗[σ] = [Id#(σ)] = [σ].

It would now be natural to ask if any map |K| → |L| between polyhedra also induces a homo-
morphism H(|K|)→ H(|L|). Surely, any map |f | : |K| → |L| that is a geometric realization of a
simplicial map f : K → L induces the homomorphism f∗ : H(K)→ H(L). But since not every
map between polyhedra is the geometric realization of some simplicial map between simplicial
complexes, we can not easily extend this definition.

Luckily, for each continous map f : |K| → |L| between polyhedra we can find a simplicial map
g : Br(K) → L from the r-fold barycentric subdivision Br(K) to L that ‘approximates’ the
continous map ‘well enough’. By well enough we mean that the induced map g∗ composed
with a certain isomorphism between H(Br(K)) and H(K) defines a unique isomorphism f∗ :
H(K) → H(L). We summarize in the following theorem, which will be stated without proof
(see [4, Thm. 3.2.7]).

Theorem 2.3.4. Any continuous map f : |K| → |L| induces a unique homomorphism f∗ :
H(|K|) → H(|L|). Given another continuous map g : |K| → |L|, the identity (fg)∗ = f∗g∗
holds.

2.4 Homotopy Invariance

Before we continue with proving some more things about simplicial homology, we will first
consider the larger context in which we are working. We have stated the homology theory in
terms of simplicial complexes and have thereby restricted ourselves to polyhedra. There are
ways to make the definition more general, so that we can consider arbitrary topological spaces,
but as we will see, the definition we have given will be general enough. The idea is that, if we
hope to find any interesting structures in our data, and if we hope this structure to contain
any sort of qualitative information, it should at least take on a simplicial structure. The more
general case allows for topological spaces that are, as stated before, too “wild” to be of interest.
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Even so, the dataset X we are working with, might not directly be given as a simplicial complex.
In chapter 3, we will describe a process by which we can obtain a simplicial complex from
X. Before this makes sense though, we should ask ourselves if any simplicial structure of X
sufficiently “captures” the homology of the underlying structure of the data. Mathematically
speaking, we’re asking whether two homotopy equivalent polyhedra also have the same homology
groups. Indeed, this is the case and we will prove this in the following section. Proof will be
based on the exposition in [6, Chapter 2.1] and [4, Thm. 2.3.0].

Theorem 2.4.1. If f, g : |K| → |L| are homotopic maps on simplicial complexes |K| and |L|,
then they induce the same maps g∗, f∗ : Hn(|K|)→ Hn(|L|).

Proof. Assume we have a homotopy H : |K| × I → |K| such that H(p, 0) = f(p) and H(p, 1) =
g(p). We can take the unit interval I = [0, 1] as the geometric realization of a simplicial complex
I := {{0}, {1}, {0, 1}}. Now, we define two simplicial maps:

i0 : K → K × I : x 7→ (x, 0)

i1 : K → K × I : x 7→ (x, 1)

Then under the identification |K×I| ' |K|×I given by theorem 1.2.6 the geometric realizations
of these maps are given for i0 by:

|i0| : |K| → |K × I| : p =
∑
i

λixi 7→
∑
i

λi(xi, 0) = (
∑
i

λixi, 0) = (p, 0)

and similarly by |i1| : p 7→ (p, 1) for i1. By composing the map i0 with H we see that

f∗ = (H ◦ |i0|)∗ = H∗|i0|∗
g∗ = (H ◦ |i1|)∗ = H∗|i1|∗

Thus, to prove the theorem we only need to show that (i0)∗ = |i0|∗ and |i1|∗ = (i1)∗ are
equivalent maps from Hn(K) to Hn(K × I). To do this we will prove that for all α ∈ Cn(K),
(i0)∗(α) − (i1)∗(α) is the boundary of some chain in Cn+1(K × I). To that end we will define
a map P : Cn(K) → Cn+1(K × (I) that takes an n-simplex σ ∈ K and maps it to a linear
combinations of simplices in K × I.

Given an ordering of the simplices x0, ..., xr of K, we define for 0 ≤ r + 1 simplicial maps

fk : K → K × I : {xi} 7→

{
(xi, 0) if i < k

(xi, 1) if i ≥ k

Note that f0 = i0 and fr+1 = i1. Intuitively, we can envision K×I as a prism, with K as the top
and bottom. By moving the last vertex (xn, 0) of the n)-simplex σ = {(x0, 0), ..., (xn, 0)} ∈ K×0
up to (xn, 1), the space between the bottom and top simplex now form a new (n + 1)-simplex
fn(σ) = {(x0, 0), ..., (xn, 0), (xn, 1)}. If we do the same to the n-simplex {(x0, 0), ..., (xn, 1)} we
obtain the simplex fn−1(σ). As we continue this process, we interpolate between f0 = i0 and
fr+1 = i1 through simplicial maps fn, similar to how a homotopy between two continuous maps
interpolates by continuous maps.

We will now define the prism operator P (σ) : Cn(K)→ Cn+1(K × I) that we hinted at in the
beginning of the proof:

P (σ) =
∑
k

(−1)kfk(σ) (2.4.1)
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Heuristically, the top edge and bottom edge of P will correspond to (i0)# and (i1)# respectively.
This motivates the following identity:

∂P = (i0)# − (i1)# − P∂ (2.4.2)

Before we derive this identity, we’ll show that it proves the theorem. Let [α] ∈ Hn(K), so in
particular α ∈ ker ∂n. Then using 2.4.2:

∂P (α) = (i0)#(α)− (i1)#(α)

so (i0)#(α)− (i1)#(α) ∈ Im ∂n+1 meaning they are equivalent in Hn(K), proving the theorem.

The last step is to prove, rather technically, identity 2.4.2. By striking through those vertices
that are removed from the simplex by the boundary map, we calculate:

∂P (σ) =
∑
l≤k

(−1)l(−1)k{(x0, 0), ...,���(xl, 0) , ..., (xk, 0), (xk, 1), ..., (xn, 1)}

+
∑
l≥k

(−1)l(−1)k{(x0, 0), , ..., (xk, 0), (xk, 1), ...,���(xl, 1) ..., (xn, 1)}

and

P∂(σ) =
∑
l<k

(−1)l−1(−1)k{(x0, 0), ...,���(xl, 0) , ..., (xk, 0), (xk, 1), ..., (xn, 1)}

+
∑
l>k

(−1)l(−1)k{(x0, 0), , ..., (xk, 0), (xk, 1), ...,���(xl, 1) ..., (xn, 1)}

so that:

∂P (σ)− P∂(σ) =
∑
l

(−1)2l{(x0, 0), , ...,���(xl, 0) , (xl, 1), ..., (xn, 1)} (2.4.3)

−
∑
l

(−1)2l{(x0, 0), , ..., (xl, 0),���(xl, 1) , ..., (xn, 1)} (2.4.4)

But since {(x0, 0), , ...,���(xl, 0) , (xl, 1), ..., (xn, 1)} = {(x0, 0), , ..., (xl, 0),���(xl, 1) , ..., (xn, 1)} for all
l except 0 and n, the terms in 2.4.3 cancel out to give:

∂P (σ)− P∂(σ) = fn(σ)− f0(σ) = (i0)#(σ)− (i1)#(σ)

as desired.

We conclude with the following important corollary.

Corollary 2.4.2. If |K| and |L| are homotopy equivalent by a map f : |K| → |L|, then the
homomorphism f∗ : Hn(|K|)→ Hn(|L|) induced by f is an isomorphism for all n.

Proof. Since f is a homotopy equivalence, there exists a map g : |L| → |K| such that gf ' Id|K|
and fg ' Id|L|. By 2.4.1 and the basic properties of the induced homomorphism stated above:
g∗f∗ = (gf)∗ = (Id|K|)∗ = Id. Similarly we prove that f∗g∗ = Id. So f∗ is an invertible
homomorphism, hence an isomorphism.
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This result states what we hoped: that homology is a homotopy invariant property of a poly-
hedron. It gives us the theoretic guarantee that as long as our process of obtaining simplicial
complexes from a dataset is determined up to homotopy type, it will also be determined up to
homology.

2.5 Homology with Coefficients

As you will recall, n-chains, the elements of the chain group Cn(K), are defined as linear
combinations

∑
niσi with coefficients ni in Z. Heuristically, the sign of the coefficients describe

the orientation of simplices within the n-chain and the magnitude the number of times this
simplex is represented in the n-chain.

We define a generalization of the chain group by allowing the coefficients to lie in any Abelian
group G instead of just Z, and we will write the resulting chain group as Cn(K,G). In fact,
since in the discussion above we have only used the fact that Z is Abelian, all the theory remains
valid. In particular, the definition of the boundary homomorphism ∂ remains valid so that the
resulting homology groups Hn(K,G) remain well-defined.

One particular case we will be using in the calculation of persistent homology is G = Z2. Let
us first consider how the boundary homomorphism looks like on α = (

∑
i niσi) ∈ Cn(K,Z2):

∂(α) =
∑
i

ni∂(σi) =
∑
i,j

(−1)jni{x0, ..., x̂j , ..., xn}

But since ∂(α) ∈ Cn−1(K,Z2), its coefficients (−1)jni must also lie in Z2 = {0, 1}. This means
we can simplify the whole definition to give:

∂(α) =
∑
i

ni∂(σi) =
∑
i,j

ni{x0, ..., x̂j , ..., xn} (2.5.1)

A second observation to make is that since Z2 is a field, Cn(K,Z2) actually becomes a Z2-vector
space! Before, the n-simplices of K formed a basis of Cn(K) in a group theoretic sense, now
they are still a basis of Cn(K,Z2), but in the sense of a vector space.

2.6 Calculating Homology

We will continue with the case of coefficients in Z2. In this case, the boundary map ∂n : Cn →
Cn−1 is now a linear map between vector spaces and can be realized as multiplication with a
dn−1 × dn matrix, where di = dimCi. We choose an ordering of the simplices, which gives us
an ordered basis of Cn and Cn−1. Since this linear map sends each n-simplex to its boundary
(n− 1)-simplices, its associated matrix becomes ∂n = (aij) where aij = 1 if the i-th simplex in
Cn−1 is in the boundary of the j-th simplex in Cn, and aij = 0 if this is not the case. For any
n-chain c =

∑
aiσi, we calculate its boundary ∂nc by writing it in vector form c = (a1, ..., adn)

and multiplying it with the matrix ∂n.

As an example, let us consider the simplicial complex K shown in 2.2. It consists of four 0-
simplices labeled from 1 to 4, five 1-simplices, and a single 2-simplex. If we order the simplices
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1 2

34

Figure 2.2: A simplicial complex K. Note that the greyed out triangle signifies the
2-simplex {1, 2, 4}.

according to the lexicographic ordering on the labels of the vertices, we can write down the
boundary matrices as:

∂1 =


1 1 0 0 0
1 0 1 1 0
0 0 1 0 1
0 1 0 1 1

 ∂2 =


1
1
0
1
0


More precisely, ∂1 is the matrix of the first boundary homomorphism with respect to the basis
{{1, 2}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} ⊆ C1(K) and ∂2 is the matrix of the 2-nd boundary homo-
morphism in relation to the basis {{1, 2, 4}} ⊆ C2(K).

From this formulation, we can now calculate the Betti numbers of X by considering the dimen-
sions of the kernel and the image of the boundary matrices ∂n:

βn = dim(ker ∂n/ Im ∂n+1) = dim(ker ∂n)− dim(Im ∂n+1)

To algorithmically obtain the dimensions of the kernel and image of a matrix, we would like to
reduce the matrix to its Smith normal form, that is:

Definition 2.6.1. A matrix A = (aij) ∈ Zn×m2 is in Smith normal form when:

� For all i 6= j, aij = 0, that is: A is a diagonal matrix.

� For some 0 ≤ k ≤ n we have that aii = 1 for i ≤ k and aii = 0 for i ≥ k.

A matrix A in Smith normal form is a diagonal matrix with Diag(A) = (1, ..., 1, 0, ..., 0). For
example: 1 0 0

0 1 0
0 0 0

 (2.6.1)

We can now easily read of dim(kerA) = 1 and dim(ImA) = 2 as the number of empty columns
and non-empty rows respectively.

We will now consider an algorithm for the specific case of matrices with entries in Z2 which is
similar to Gaussian elimination. If B ∈ Zn×m2 is the matrix that we want to reduce to its Smith
normal form A, we will do this by applying a chain of elementary row and column operations
to B. In terms of matrices, we are looking for invertible matrices P ∈ Zn×n2 and Q ∈ Zm×m2

such that A = PBQ. The specific elementary operations we will use are the interchanging of
rows/columns and the addition of a row/column to another row/column. From linear algebra we
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know that elementary matrices are invertible and thus do not change the dimension of the kernel
and image of B. In other words, for any matrix of ∂n, we can extract the Betti number by looking
at the matrix in Smith normal form. In the outline of the algorithm, instead of specifying the
elementary matrices with which we multiply B, we will just specify which elementary operation
we are doing.

Theorem 2.6.2. Let B = (bij) be any n×m matrix with entries in Z2. Then B can be reduced
to a matrix A ∈ Zn×m2 by elementary row and column operations

Proof. If B = 0 it is already in Smith normal form and we are done. If not, there is an element
bij = 1. By a consecutively swapping the i-th row with the 1-st row and the j-th column with
the 1-st column, we get b11 = 1. Now for each element bi1 = 1 in the same column as b11, we
simple add the 1-st row to the j-th row to get bi1 = 1. We do this similarly for each b1j = 1 in
the same row as b11 to get a matrix with block form:(

1 0
0 C

)
For C some n− 1×m− 1 matrix in Z2. We continue this process recursively, by applying the
same algorithm to C, to ultimately end up with a matrix in Smith normal form.

More generally we could have defined the Smith normal form for matrices with entries in any
ring. If this ring is also a principial ideal domain we can always reduce these matrices to its
Smith normal form.

If we apply the above algorithm to our example K from figure 2.2 we get the following matrices
for ∂1 and ∂2:

∂1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

 ∂2 =


1
0
0
0
0


From which we see: β1 = dim(ker ∂1)− dim(Im ∂2) = 2− 1 = 1. This agrees with our intuition
in that the first Betti number is equal to the number of “1-dimensional holes” in K.

In the next chapter, we will look at the situation where we don’t just have one simplicial complex
K, but a whole chain of complexes K0 ⊆ K1 ⊆ ... ⊆ Kn. In this case, we want know how the
homology classes of the complexes change as we go along this chain.



Chapter 3

Persistent Homology

In the following section, we will turn our discussion towards the study of a certain finite point
cloud S ⊆ Rn. We will see how we can study the shape of S by using homology. Since S is finite
set in R, it does not yet contain any interesting homology. So first we will construct a simplicial
complex from S that in some sense approximates its shape. More generally, we can construct a
simplicial complex from a cover of a topological space X, by taking its nerve, which we prove is
homotopy equivalent to the cover.

Then, going back to the specific case of our point cloud S, we construct a parametrized cover of S,
whose nerve is called the Čech complex of S. For each choice of the parameter, we can calculate
the simplicial homology of the Čech complex. By looking at how the simplicial homology changes
as we go from one choice of the parameter to another, we define its persistence homology. The
persistence homology turns out to have a nice representation called the persistence diagram,
which we will prove is stable with respect to small perturbations in the point cloud S.

3.1 The Nerve Theorem

Say we have a topological space X and U0, U1, U2 subsets of X. If U0 intersects with U1, we
might register this fact by writing {U0, U1}. Similarly, if the three sets U0, U1, U2 have non-empty
intersection, we could register this by writing {U0, U1, U2}. By doing this, we are describing the
different ways by which subsets of a topological space X intersect in terms of sets. What we
will see is that these sets actually form a simplicial complex.

Definition 3.1.1. For a topological space X, we consider a finite collection U of subsets U ⊆ X.
The nerve U , is the collection of all subsets of P(U) whose sets have non-empty intersections:

N (U) :=
{
X ⊆ P(U)

∣∣∣ ⋂X 6= ∅
}

So, simplices in N (U) correspond to subcollections of sets in U that have non-empty intersection.
This indeed defines a simplicial complex:

Lemma 3.1.2. For any finite collection of sets U , its nerve N (U) defines a simplicial complex.

16
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Proof. Let X ∈ N (U), then if Y ⊆ X, we have that for all S ∈ Y also S ∈ X. So:
⋂
X ⊆

⋂
Y

and since
⋂
X is non-empty,

⋂
Y is also non-empty.

So we are able to map a topological space X, together with a collection U of sets in X to a
simplicial complex. If X is embeddable into RN , and U is a collection of closed convex sets that
covers X, then X turns out to be homotopy equivalent to the geometric realization of its nerve.
The proof we present here is based on the original proof by André Weil [9] (for a translation,
see [7]).

Given a simplex σ ∈ K, its closed star St(σ) is a simplicial complex so that we can consider its
geometric realization |St(σ)|. The following lemma relates this realization to points in |B(K)|
and will be needed for proving the Nerve Theorem.

Lemma 3.1.3. Let (K,Φ) be a simplicial complex with vertex set Φ and B := (B(K),K) its
barycentric subdivision. Consider the simplex {x} ∈ K consisting of a single vertex x ∈ Φ, then:

|St({{x}})| = {p ∈ |B| | {x} ⊆ τ for all τ ∈ sup p} (3.1.1)

where St({{x}}) is the closed star of the element {{x}} ∈ B.1

Proof. We will write St(x) as a shorthand for St({{x}}) ⊆ B.

Let p ∈ |B| such that {x} ⊆ τ for all τ ∈ sup p. Thus, by definition, sup(p) ⊆ St(x) ⊆ St(x)
and thus p ∈ |St(x)|.

Now let p ∈ |St(x)|. By lemma 1.1.9 we have:

|St(x)| =
⋃

σ∈St(x)

|σ|

so that p ∈ |σ| for some σ ∈ St(x). Since {x} ∈ σ and since no other τ ∈ K is contained in {x},
by the definition of the barycentric subdivision we have {x} ⊆ τ for all τ ∈ σ. Recall that the
vertices of σ are given by the vertices in σ. Thus, since sup p is a collection of vertices in σ we
have that sup p ⊆ σ. Then {x} ⊆ τ for all τ ∈ sup p, proving the lemma.

Now for the main result.

Theorem 3.1.4 (The Nerve Theorem). Let F = {Fi} be a finite collection of closed, convex
sets in RN . Then the geometric realization of the nerve of F and the union of all sets contained
in F are homotopy equivalent:

⋃
F ' |N (F)|.

Proof. The idea of the proof is to construct two maps f :
⋃
F → |N (F)| and g : |N (F)| →

⋃
F

so that their composition is homotopic to the identity.

More precisely, we will construct f so that it maps the areas in
⋃
F that are not an intersec-

tion, to the 0-simplices in |N (F)|. Then, 1-fold intersections are mapped to 1-simplices, 2-fold
intersections to 2-simplices and so on and so forth. Furthermore, g will be constructed by first
mapping vertices σ of B(N (K)) into points in

⋃
F that lie in ∩σ. Then g is expanded to the

whole geometric realization by linear interpolation.

1The double brackets around x signify that {{x}} consists of a single vertex {x} ∈ K
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F1

F3

F2

F1

F3

F2

f

g

{F1} {F2}

{F3}

f

f

⋃
F

⋃
F

|B(N (F))|

Figure 3.1: An example of how f and g can be constructed. The areas of no
intersection in

⋃
F get mapped to the vertices of the triangle, the areas of 1-fold

intersection get mapped to the edges and the 2-fold intersection maps to the interior
of the triangle.

For each Fi we construct an open convex set Ui ⊆ RN containing Fi by taking the union of open
balls of radius ε > 0 around each point in Fi. That is:

Ui =
⋃
x∈Fi

B̊(x, ε)

Then clearly, U = {Ui} is a finite open cover of
⋃
F . Since RN is a normal space,

⋃
F admits a

partition of unity subordinated to U . That is, there exist continuous functions fi :
⋃
F → [0, 1]

such that fi is supported in Ui and for any point x ∈
⋃
F we have

∑
i fi(x) = 1. Then, we

define a map f :
⋃
F → |N (F)| by:

f(x) =
∑
i

fi(x)Fi

where we take each Fi as an element in |N (F)| (recall the definition in 1.2.1). What we are
doing here is that we are taking the function values of the partition of unity {fi} as barycentric
coordinates of points in |N (F)|.

Lets say f ′ is another such function, given by a different partition of unity {f ′i}. Let x ∈
⋃
F

and J the set of indices j ∈ J such that x ∈ Uj . Then f(x) and f ′(x) are both contained
in | { Fj | j ∈ J } | ⊆ |N (F)|. Since the geometric realization of simplices are convex, the line
joining f(x) and f ′(x) is contained in |N (F)|. Since for a given cover, the space of all its
partitions of unity is convex, f and f ′ are homotopic by linear interpolation.

We now define a map g : |N (F)| →
⋃
F which will turn out to be a homotopy inverse of f .

Taking B := B(N (K)) as the barycentric subdivision of the nerve, we will define g as a map
from |B| to

⋃
F . By lemma 1.2.7, this defines g as a map on |N (F)|. Recall that simplices

{σ0, ..., σn} ∈ B are sets of simplices σi ∈ N (F).
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We choose any mapping π : N (F)→
⋃
F that takes a vertex {σn} ∈ B to any point x ∈

⋂
σn.

We will call any such map a projection. Let p ∈ |B| and recall that we can write p =
∑
i λiσi

with λi the barycentric coordinates of p. Heuristically, if we envision p as a point in
⋃
F we

would like the support sup(p) of p to consist of all σi ∈ N (F) for which p ∈
⋂
σi. This motivates

the following definition of g : |B| →
⋃
F :

g(p) =
∑

σ∈sup(p)

λiπ(σ)

Now let g′ be another such function given by another projection π′ : B →
⋃
F . We note

that for any σ ∈ N (F) the points π(σ) and π′(σ) are both contained in
⋂
σn. Since

⋂
σn is

an intersection of convex sets, it is also convex so that the line connecting π(b) and π′(b) is
contained in

⋂
σn. Thus, π and π′ are homotopic by linear interpolation. Clearly then, g and

g′ are also homotopic.

We continue by proving that f ◦ g w Id. Notice how we have not made any strict requirements
for the partition of unity {fi} so that the map f it induces might as well send the whole of⋃
F to a single vertex of |N (F)|. What we did show however, is that any other partition of

unity induces a function f ′ that is homotopic to f . For a given composition f ◦ g, we will now
construct a new function f ′ depending on g such that f ◦ g w f ′ ◦ g w Id.

Writing St(Fi) for St({{Fi}}) ⊆ B, we will now show that the image of |St(Fi))| under g is
contained in Ui. Let p ∈ |St(Fi))|. By 3.1.3, each element in sup(p) contains Fi. Thus π send
each element of sup p to a point in Fi and consequently g(p) is now a linear combination of
points in Fi. Since Fi is convex we have that g(p) ∈ Fi ⊆ Ui.

Furthermore, since there are only finitely many simplices in St(Fi), the image of its geometric
realization under g is compact, so it is closed and bounded. Therefore, there exists a convex open
subset U ′i of Ui containing g(|St(Fi))| such that U ′i ⊆ Ui and such that the U ′i still cover

⋃
F .

Note here that we can indeed construct the U ′i as convex by constructing it in the same way as
Ui but for a radius ε′ < ε. We can now choose a new partition of unity {f ′i}, still subordinated
to U , but with the extra condition that each f ′i is positive on g(|St(Fi))| and f ′i = 0 outside of
U ′i . This partition induces a map f ′ homotopic to f .

Now let p be a point in |B|. Since |B| =
⋃
i |St(Fi)|, p ∈ |St(Fk)| for some Fk ∈ F . Since f ′k

is positive on g(|St(Fk)|), we have f ′k ◦ g(p) > 0, giving {Fk} ∈ sup(f ′ ◦ g(p)) ∈ B. By the
definition of the barycentric subdivision, {Fk} ⊆ τ for all τ ∈ sup p so that by 3.1.3, f ′ ◦ g(p) is
also contained in |St(Fk)|. Since the geometric realization of a star is convex, the line joining p
and f ′ ◦ g(p) is contained in

⋃
F and thus f ′ ◦ g is homotopic to the identity.

To prove that g ◦ f ′ w Id, we will proceed similarly. Let x ∈
⋃
F . Thus x ∈ Uk for a certain

k, giving f ′k(x) > 0 so that {Fk} ∈ sup(f ′(x)) ∈ B. Arguing similarly by the definition of the
barycentric subdivision, each τ ∈ sup(f ′(x)) contains {Fk}. Then by 3.1.3 f ′(x) ∈ |St(Fk)|.
But then g ◦ f ′(x) ∈ g(St(Fk)) ⊆ U ′k, so that x and g ◦ f ′(x) are connected by a line contained
in U ′k. So again, g ◦ f ′ is homotopic to the identity by linear interpolation.
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3.2 Čech Complex

Assume we have finite a point cloud S ⊆ Rn, for example a set of data points, each with
n variables. When we say we want to find the underlying structure of the point set S, we
are assuming S is sampled from some specific subspace E ⊆ Rn and we would like to show
topological properties of this space E. More precisely, we would like to recover the homology of
E. Since S is a discrete set, it does not have any interesting topology on its own, but through
thickening S by constructing balls around the points in S and looking at their union, we hope
to obtain more structure. The collection of these balls induce a simplicial complex called the
Čech complex.

Definition 3.2.1. For a finite set S ⊆ Rn, its Čech complex C(S, ε) with radius ε > 0 is defined
as the nerve of Sε := {Bε(x) | x ∈ S }. That is:

C(S, ε) := N (Sε)

where Sε is the collection of balls with radius ε, centered around points in S.

By the Nerve Theorem 3.1.4, we know that the geometric realization of C(S, ε) is homotopy
equivalent to the union of all balls in Sε. Since the homology of polyhedra is homotopy invariant,
we see that we can capture the homology structure of Sε by looking at the homology of the
Čech complex.

Lemma 3.2.2. Given a point cloud S ⊆ RN , and ε ≤ ε′, then C(S, ε) ⊆ C(S, ε′).

Proof. Each ball B(x, ε) ⊆ B(x, ε′). Thus, after identifying balls the same origin, any two balls
in Sε that intersect also intersect in Sε′ .

Lemma 3.2.3. Given a point cloud S ⊆ RN , there is an εn such that C(S, ε) ⊆ C(S, εn) for
any ε ≤ εn. We call C(S, εn) the maximal Čech complex of S.

Proof. Let εn := max{‖x − y‖|x, y ∈ S}. Then for any x ∈ S, the ball B(x, εn) contains
S so that the intersection of any two balls in Sεn contains S as well. Thus N (Sεn) equals
the power set P(Sεn). For any ε ≤ εn, identifying balls with the same origin, we have that
N (Sε) ⊆ P(Sεn) = N (Sεn) as had to be proven.

Since S is finite, the different ε for which a new simplex appears in C(S, ε) forms a discrete
set ε1, ..., εn. Thus any two Čech complexes associated with radii contained in a single interval
[εi, εi+1) are isomorphic. Thus it makes sense to write all the Čech complexes of a point cloud
S as finite sequence

0 = K0 ⊆ K1 ⊆ ... ⊆ Kn = K

where Ki := C(S, ε) and where each Ki is a subcomplex of all the larger complexes in the chain.

We can define a function f : K → R that maps each simplex in K to the εi for which it first
appears in C(S, ε) so that the subcomplexes Ki shown above can now be seen as sublevel sets
of Ki := f−1(−∞, εi] of f . We can generalize this construction to any map from a simplicial
complex K to R to get something we call a filtration.
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K1

1 2

3

1 2

3

K2

1 2

3

K3

1 2

3

⊆ ⊆

Figure 3.2: A chain of simplicial complexes K1,K2,K3.

3.3 Filtrations

Definition 3.3.1. Let K be a simplicial complex and f : K → R a monotonic map, assigning
to each simplex of K a value in R, such that if τ is a face of σ, then f(τ) ≤ f(σ). The filtration
of f is the collection:

{K(ε) := f−1(−∞, ε] | ε ∈ R}

In this context, the function f is called the filter and ε ∈ R is called the filtration parameter.

Since K is finite, f(K) ⊆ R is also finite. Thus we see that the filtration

{K(ε) = f−1(−∞, ε] | ε ∈ R }

only contains finitely many distinct sets. We can index the elements in f(K) as ε0 < ε1 < ... < εn
and by extension we can index each element in the filtration by Ki := K(εi). Thus a filtration
can be seen as a chain:

K0 ⊆ K1 ⊆ ... ⊆ Kn

where n is not necessarily equal to the cardinality of K, as simplices in K might get mapped to
the same value in R. We see that this construction is not unique to the Čech complex. All we
need is a filter f : K → R on a simplicial complex K to obtain a filtration. Note however that
n is not necessarily equal to the cardinality of K, as simplices in K might get mapped to the
same value in R.

Of course we can also consider the homology groups of each simplicial complex in the filtra-
tion. The inclusions in a chain of simplicial complexes Ki ↪→ Kj induce homomorphisms
f i,jp : Hp(Ki) → Hp(Kj) so that we get, for each p, a chain of homology groups connected by
homomorphisms:

0 Hp(K1) ... Hp(KN )
f0,1
p f1,2

p fn−1,n
p

In each step along this chain, homology classes might appear or disappear.

Example 3.3.2. Take for example the three simplicial complexes shown in figure 3.2 that form
a filtration of some f : K := K3 → R. We see that the class {1, 2}+ {2, 3}+ {3, 1} first appears
in H1(K2) by the addition of the 1-simplex {2, 3} in K2. In the subsequent complex K3 it
disappears in the its first homology class, by the addition of the 2-simplex {1, 2, 3}. Indeed:
{1, 2}+ {2, 3}+ {3, 1} = ∂2({1, 2, 3}) ⊆ Im(∂2). 4

In applications, we would like to study the structure of our simplicial complex using homology.
Since the homology changes as we change the filtration parameter ε a natural question to ask
is: which ε should we pick to best detect the feature that we are interested in? The problem
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is that in a lot of cases there might not be an a priori right choice for ε. Instead of trying to
find some procedure or rationale for picking ε, we will discuss a different idea. We will study
a representation of the homology structure underlying S, without introducing any restraints on
the filtration parameter.

3.4 Persistence Modules

Instead of asking ourselves which filtration parameters ε to use, we will look at how the homology
of a filtration changes as we change ε. In particular, we study those classes that persist over a
longer range of ε’s, and collect these in groups called persistence homology groups.

First we will more precisely define what we mean by the homology structure of a point set S
through the notions of the persistence module and its associated persistent homology.

Then we will study a useful representation of the persistence module called the persistence
diagram. We will define the bottleneck distance which is a metric on the space of all persistence
diagrams. Lastly we will see that under this metric the persistence diagram is stable with respect
to perturbations in the filtration. That is, small changes in our data only result in small changes
in the persistence diagram. We will follow [8, Chapter 1] and [2, Section 7.2].

In the following section we will fix a p ∈ N and write H(K) for the p-th homology vector space
Hp(K).

Definition 3.4.1. Given a filtration{
f−1(−∞, x]

∣∣ x ∈ R
}

of a monotonic function f : K → R, a persistence module of f is a collection:

V := {Hx := H(f−1(−∞, x] |x ∈ R}

of homology vector spaces together with the collection of linear maps fyx : Hx → Hy, where fyx
for given x < y is the function induced by the inclusion f−1(−∞, x] ⊆ f−1(−∞, y].

So, the persistence module not only contains the information from the homology groups Hx,
but also describes how homology classes change under the maps fyx . There is a useful way of
aggregating this information by defining the persistent homology spaces.

Definition 3.4.2. Given a persistence module V , we define its persistent homology spaces
Hy
x as the images of the maps fyx . That is:

Hy
x := Im fyx ⊆ Hy

For each such vector space, we define its persistent Betti number as βyx := dimHy
x . By

convention, we say that Hy
x = 0 when y is infinite.

Whenever we need to emphasize the dependence of the vector spaces Hx and Hy
x on f we will

write Hx(f) and Hy
x(f) respectively.

We introduce some vocabulary for the homology groups of the filtration.
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Definition 3.4.3. Given a filtration of f : K → R, we say that a class γ ∈ Hx is born at x
when γ /∈ Hx

x−1. If γ was born at x, then it dies at y for some y ≥ x when it has merged with an

older class, that is: fyx (γ) ∈ Hy
x−1, and y is the parameter where this is the case: fyx (γ) /∈ Hy−1

x−1 .

As stated before, we can index the distinct subcomplexes in a filtration by Ki := f−1(−∞, εi]
so that we might as well say that a class is born or dies in Ki, by which we mean it was born
or died at εi.

Example 3.4.4. If we go back to example 3.3.2, we see that the class γ := {1, 2}+{2, 3}+{3, 1}
is born in K2. Then since {1, 2} + {2, 3} + {3, 1} ≡ 0 as homology class in Hp(K3), γ ∈ H1,3

p .
In other words, γ merges with the trivial class and thus dies in K3. 4

3.5 Persistence Diagrams

To visualize this information, we will now define a representation of the persistence homology
called the persistence diagram. The persistence diagram will consist of the birth-times and
death-times of all the homology classes in the filtration. Since at each step in the filtration,
multiple classes might be born and die at the same time, the persistence diagram will end up
being a multiset in R 2 := R× (R ∪ {−∞,∞}).

Definition 3.5.1. A multiset is a tuple (D,m) with D a set called the underlying set and
m : D → N ∪ {∞} a function called the multiplicity.

In other words, a multiset D is a set where for each a ∈ D where m(a) is the number of times
that a appears in D.

We are now ready to define the persistence diagram.

Definition 3.5.2. Let f : K → R be a monotonic function on a simplicial complex K. Let
Im(f) = {a1, a2, ..., an} and let b0, ..., bn be an interleaved sequence. That is:

bi−1 < ai < bi−1

Additionally, we define b−1 = a0 = −∞ and bn+1 = an+1 = ∞. For the diagonal in R2 we use
the notation ∆ := { (x, x) | x ∈ R }.

We consider the persistence module V of f consisting of the p-th homology spaces Hx. Then the

p-th persistence diagram of f is the multiset D(f) = { (ai, aj) | 0 ≤ i < j ≤ n+ 1 }∪∆ ⊆ R2

with multiplicity defined as:

µ(ai, aj) := β
bj
bi−1
− βbjbi + β

bj−1

bi
− βbj−1

bi−1

on the points (ai, aj) and as ∞ on the diagonal ∆. Where βyx are the persistent Betti-numbers
of the persistence module V .

We include the diagonal ∆ for technical reasons that will become clear in section 3.6. Further-
more, for any point (a, b) ∈ D(f), we have a ≤ b so that D(f) ⊂ R 2 will lie in the region
{ (x, y) ∈ R2 | y ≥ x } above the diagonal.
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Since Hy
x only changes at values ai, we define the multiplicity at (ai, aj) by looking at the

persistent Betti-numbers at the interleaved values bi, bi−1, bj , bj−1 around it. For example, we

interpret β
bj−1

bi
as the number of classes that are born before bi and die after bj−1. Then,

µ(ai, aj) represents the number of classes that are born between bi and bi−1 and die between bj
and bj−1.

Remark 3.5.3. By the above interpretation, (ai, an+1) = (ai,∞) corresponds to classes that
are born at ai, but die at ∞. To make this precise, we could have extended f : K → R as
follows.

We constructK fromK by adding a single vertex C and for each simplex σ ∈ K, adding C∪P(σ).
This turns out te be a simplicial version of taking the cone of a topological space and, similarly
to the general case, K will have trivial homology. We take a new function f : K → R ∪ {∞}
which is defined as f on K and as σ 7→ ∞ on K \K.

Instead of defining the persistence diagram for f , we could have defined it similarly for f . Now,
classes that survive the whole filtration of f : K → R, will become trivial in K. Since f(K) =∞,
we say that this class dies at infinity.

Recall that in definition 3.4.2, we defined Hy
x = 0 whenever y is equal to infinity. The above

discussion justifies this convention, since now H∞ = H(f −1(−∞,∞]) = H(K) = {0}.

We can plot all points in D(f) on a diagram to obtain a graphic representation.

Example 3.5.4. Consider the filtration depicted in figure 3.3. We can consider the zeroth, first
and second homology classes of the filtration as we move along the subcomplexes. For example,
K1 contains two connected components, so that the dimension of H0(K1) equals two. One of
these classes dies in the next subcomplex K1 when the two components merge with each other.
This means that the zeroth persistence diagram is the multiset {(1, 2), (1,∞)}. We can plot
this multiset in a 2-dimensional graph by a little trick. We take the largest ε ∈ Im f and draw
a horizontal line at height ε that now represents {(x,∞|x ∈ R}. If we similarly do this for the
first and second persistence diagram, we obtain the picture in figure 3.4. 4

K1 K2 K3 K4

Figure 3.3: A filtration K1,K2,K3,K4.

We can now measure how persistent a homology class γ is by looking at how long it ‘survives’.

Definition 3.5.5. Let f : K → R define a filtration of a simplicial complex K. Let γ ∈ Hx

that is born at x and dies at y. The persistence of γ is the difference:

x− y

If γ does not die at any time y, then the persistence of γ is said to be ∞.
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Figure 3.4: The persistence diagram obtained from the filtration depicted in fig-
ure 3.3.

So in our persistence diagram depicted in figure 3.4, the persistence of a class is depicted by its
horizontal distance from the diagonal.

As it stands, the persistent homology spaces Hy
x of a monotonic function f give a corresponding

persistence diagram D(f). What we will now see is that the converse is also true. Each
persistence diagram gives corresponding persistent homology spaces. We will do this by not just
considering the multiplicity of a single point, of a whole region of the diagram.

Definition 3.5.6. The multiplicity of a subset R in a multiset (D,m) is defined as the sum of
the multiplicities of elements in R. That is:

#(R) :=
∑

(x,y)∈R
x≤y

m(x, y)

Using this, we define the total multiplicity of a persitence diagram.

Definition 3.5.7. The total multiplicity of a persistence diagram D(f) is defined as

#(D(f)−∆)

That is, we consider the multiplicity of the diagram, excluding the points on the diagonal ∆.

By the way we constructed the persistence diagram, each upper left quadrant Q(x, y) :=
{ (p, q) ∈ D(f) | p ≤ x, q ≥ y } corresponds to a persistent homology vector space.
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Lemma 3.5.8 (k-Triangle Lemma, [3]). Let f : K → R be monotonic and x < y be real
numbers such that (x, y) is not in the image of f . Then, the total multiplicity of the upper left

quadrant Q(x, y) ⊆ R2
of D(f) is:

#(D(f) ∩Q(x, y)) = βyx

Proof. We use the same definition as in 3.5.2 for the interleaved sequences {ai}n+1
i=0 and {bi}n+1

i=−1.
Since the sublevel sets of f stay the same on the open intervals ai, ai+1, we can assume that
x = bk and y = bl−1 for some integers k, l. Since x < y, we also know that k < l. Then the
multiplicity of D(f) ∩Q(bk, bl−1) will be a sum over all (ai, aj) ∈ D(f) where i ≤ k and l ≤ j.
Since i < j by definition of the persistence diagram, we can summarize these inequalities as
i ≤ k < l ≤ j. We obtain the following sum:

#(D(f) ∩Q(bk, bl−1)) =
∑

i≤k<l≤j

µ(ai, aj)

=
∑

i≤k<l≤j

β
bj
bi−1
− βbjbi + β

bj−1

bi
− βbj−1

bi−1

=
∑
i≤k

β
bn+1

bi−1
− βbn+1

bi
+ β

bl−1

bi
− βbl−1

bi−1

= β
bn+1

b−1
− βbn+1

bk
+ β

bl−1

bk
− βbl−1

b−1

In the last two equalities, we use the fact that
∑
µ(ai, aj) is a telescoping sum when we fix

one of the two indices. Recall that we defined b−1 = −∞ and bn+1 = ∞. By a slight abuse

of notation: H−∞ = H(f−1(−∞,∞]) = {0}, so β
bl−1

b−1
= 0. Additionally we said that Hy

x = 0
whenever y is infinite. Thus, all terms in the last expression above are equal to 0, except for

β
bl−1

bk
= βyx. This proves the lemma.

Since the persistent homology spaces Hy
x are finite dimensional, they are completely determined

by their dimension βyx. Thus, whenever we have a persistence diagram, we find its corresponding
persistent homology spaces by considering the total multiplicities in the upper left quadrants of
D(f).

We see that upper-left quadrants Q(x, y) in the persistence diagram D(f) correspond to all
classes that were born before x and died after y and their total multiplicity is equal to the
dimension of Hy

x , see figure 3.5. We can do even better, by relating not just quadrants but
squares to specific vector spaces. To do this, we need some more definitions.

Definition 3.5.9. Let f : K → R be a monotonic map and w < x < y < z not in the image of
f . We define the following two subspaces of Hy

x .

Hy,z
x Since the inclusions f−1(−∞, x] ⊆ f−1(−∞, y] ⊆ f−1(−∞, z] commute, the diagram in

figure 3.6 also commutes. Thus, the restriction of fzy to Hy
x = Im(fyx ) defines a surjection

fy,zx : Hy
x → Hz

x . We then define Hy,z
x := ker(fy,zx ) ⊆ Hy

x .

Hy,z
w,x Since Hy

w = Im(fyw) = Im(fyx ◦ fxw) ⊆ Im(fyx ) = Hy
x , we can write fy,zw as the restriction

of fy,zx to Hy
w. Thus ker(fy,zw ) ⊆ ker(fy,zx ) so that the quotient Hy,z

w,x := Hy,z
x /Hy,z

w is
well-defined.
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bi−1 bi

bj−1

bj
(ai, aj)

H
bj−1

bi

H
bj−1

bi−1

Birth

D
ea

th

Figure 3.5: The greyed-out region contains all points representing classes that are
born before bi and die after bj−1. Similarly, the dark-grey region corresponds to
classes that are born before bi−1 and die after bj−1. The light-grey area then
corresponds to classes that die after bj−1, but we born between bi−1 and bi.

Hx Hy

Fz

fzx

fyx

fzy

Figure 3.6: Commutative diagram of the maps between Hx, Hy, Hz induced by the
inclusions between level sets of f .

Similar to how we do this with persistent homology spaces, we will write Hy,z
x (f) and Hy,z

w,x(f)
whenever we want to emphasize the dependence of the spaces on f .

Now, we apply the k-Triangle Lemma (3.5.8) to relate regions in the persistence diagram D(f)
to the vector spaces defined above.

Lemma 3.5.10. Let f : K → R be monotonic on a simplicial complex K. Let w < x < y < z
be elements in R \ Im(f)2. Then the following statements are true:

1. dimHy
x = #(D(f) ∩ [−∞, x]× [y,∞]).

2. dimHy,z
x = #(D(f) ∩ [−∞, x]× [y, z]).

3. dimHy,z
w,x = #(D(f) ∩ [w, x]× [y, z]).

Proof. We write Q(x, y) := [−∞, x]× [y,∞] ⊆ R2
.

2This restriction on w, x, y, z ensures that we can apply 3.5.8



CHAPTER 3. PERSISTENT HOMOLOGY 28

1. This is just the k-Triangle Lemma (3.5.8), repeated here for completeness.

2. Recall that Im fy,zx = Hz
x and ker fy,zx = F y,zx . Then, from linear algebra and using the

above item, we know that dimHy,z
x = dimHy

x − dimHz
x = βyx − βzx = #(D(f)∩ (Q(x, y) \

Q(x, z))) = #(D(f) ∩ ([−∞, x]× [y, z])).

3. This follows similarly by using the dimension formula for quotients and using the above
item.

The power of this lemma lies in the fact that we can now describe specific ‘boxes’ in the per-
sistence diagram D(f) by specific vector spaces. In the next section, we will use this tool
extensively to relate persistence diagrams induced by distinct maps f, g : K → R to each other
through vector spaces that are determined by f and g.

3.6 Bottleneck Stability

In the context of data analysis, we are given a dataset X ⊆ Rn in which we try to differentiate
features from noise. Heuristically, noise consists of small variations in the data that do not
exhibit any particular pattern that we are trying to detect.

Our hope is, that using persistence diagrams, we will able to recognize these small variations
as homology classes that have a very short persistence. That is, if we have two datasets X
and Y measuring the same phenomenon, but differing slightly because of noise, we hope that
their associated persistence diagrams will also only differ slightly. To see this, we first define
the bottleneck distance.

We can see a persistence diagram D(f) as a countably infinite set by interpreting elements
p ∈ D(f) with multiplicity µ(p) > 1 as µ(p) distinct elements. In the case of multiplicity ∞,
we consider a countably infinite set of added distinct elements, so that the whole set remains
countable. Having made these adjustments, we can now relate two persistence diagrams by
looking at all bijections between them.

Definition 3.6.1. Let X and Y be two persistence diagrams. We define the bottleneck
distance between X and Y as:

W∞(X,Y ) = inf
φ

sup
x∈X
‖x− γ(x)‖∞

where φ : X → Y goes over all bijections between X and Y and ‖(x, y)‖∞ = max(|x|, |y|) is the
L∞-norm on R2.

Recall that we defined persistence diagrams to include all points on the diagonal with infinite
multiplicity. Thus, persistence diagrams are always countably infinite so that we can always
find bijections between them.

The subject of this section will be the following theorem. The original proof in [1], will be
explained here in detail.
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Theorem 3.6.2 (Bottleneck Stability [1]). Let f, g : K → R be monotonic functions. Then:

W∞(D(f), D(g)) ≤ ‖f − g‖∞

This means that if two filtrations are similar, then their persistence diagrams will also be very
similar. In other words, the persistence diagram is a stable representation of the filtration. We
can therefore use the persistence diagram in data analysis, as small uncertainty in the point
cloud and consequently a small uncertainty in the filtration, will only result in a small change
in the persistence diagram.

First we will prove a particular case of the theorem called the Easy Bijection Lemma, where we
assume a certain restriction on the distance ‖f − g‖∞. We do this by constructing a particular
bijection between the diagrams D(f) and D(g). The idea is to relate the multiplicity of a
rectangle in D(g) to the multiplicity of a slightly smaller rectangle in D(f). If we take the
rectangle R ⊆ D(g) small enough, using the Box Lemma its multiplicity will correspond to the
multiplicity of a single point in D(f) so that we can coherently map R into this point.

To prove the general theorem then, we interpolate between f and g by maps that are close
enough so that the Easy Bijection Lemma applies.

Before we prove the Box Lemma, we need the following result.

Lemma 3.6.3. Given two monotonic functions f, g : K → R, their persistence diagrams V,W ,
and writing ε := ‖f − g‖∞, we have that the V and W are ε-interleaved. That is, for all b < c
there exists a map ψc : Hc(g)→ Hc+ε(f) such that:

Hc+ε
b−ε (f) ⊆ ψc(Hc

b (g)) ⊆ Hc+ε
b+ε (f) (3.6.1)

Proof. Since |f(σ) − g(σ)| ≤ ε we have that g(ε) ≤ f(σ) + ε ≤ x + ε. So f−1(−∞, x] ⊆
g−1(−∞, x + ε]. Let φx : Hx(f) → Hx+ε(g) be the map induced by this inclusion. The
symmetric inclusion also holds, and the map it induces we call ψx : Hx(g)→ Hx+ε(f).

Combining these maps with the one we already defined in 3.5.9 and writing Fx := Hx(f) and
Gx := Hx(g) we get the following diagram.

Fb−ε Fc+ε

Gb Gc

φb−ε

fc+εb−ε

gcb

ψc

Fb+ε Fc+ε

Gb Gc

fc+εb−ε

φb

gcb

ψc

Since all the maps here are induced by inclusions, and since inclusions commute, this diagram
also commutes. From the diagram we now see that f c+εb−ε = ψc ◦ gcb ◦ φb−ε so clearly:

F c+εb−ε = Im f c+εb−ε = Im(ψc ◦ gcb ◦ φb−ε) ⊆ ψc(Im gcb) = ψc(G
c
b)

Now for the other inclusion, we turn to the right diagram which by commutativity gives ψc◦gcb =
f c+εb+ε ◦ ψb. Thus:

ψ(Gcb) = Imψc ◦ gcb = Im f c+εb+ε ◦ ψb ⊆ Im f c+εb+ε = F c+εb+ε

which proves the lemma.
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The following lemma will a crucial step in proving stability.

Lemma 3.6.4 (Box Lemma, [1]). Let f, g : K → R be two monotonic functions on a simplicial
complex K. For real numbers a < b < c < d and ε := ‖f − g‖∞, we consider the rectangle
R = [a, b]× [c, d], and the rectangle Rε = [a+ ε, b− ε]× [c+ ε]× [d− ε] obtained by shrinking
R. Then:

#(D(f) ∩Rε) ≤ #(D(g) ∩R)

Proof. Before we begin the proof, we introduce some short-hand notation. We will write Gx :=
Hx(g) and Fx := Hx(f) as in lemma 3.6.3. Furthermore we write Fx := Hx(f),F y,zx := Hy,z

x (f)
and F y,zw,x := Hy,z

w,x(f) and similarly for the spaces associated with g.

Applying the k-Triangle Lemma. We reduce the problem to the case that a, b, c, d /∈ Im g
and a+ ε, b− ε, c+ ε, d− ε /∈ Im f . Assuming otherwise, since D(g) ⊆ Im f it is a discrete finite
set. Thus we can make R slightly larger so that D(g) ∩ R does not change. Similarly, this is
true for Rε and D(f). This means that we can apply the k-Triangle Lemma 3.5.8 to see that:

dimF c+ε,d−εa+ε,b−ε = #(D(f) ∩Rε) (3.6.2)

dimGc,da,b = #(D(g) ∩R) (3.6.3)

Thus to prove the lemma, we need to show that F c+ε,d−εa+ε,b−ε is a subspace of Gc,da,b. We would hope

to be able to prove this by showing that its constituent homology spaces of the form F y±εx±ε are
subspaces of Gyx and vice versa. The interleaving lemma 3.6.3 helps us with this, but there is
one problem: it does not tell us that Gcb is a subspace of F c+εb−ε and in fact this is not generally
the case.

Constructing the diagram. Instead our strategy will be to define some subspace Ec,da,b ⊆
Gc,da,b. Then, we hope to be able to show thatF c+ε,d−εa+ε,b−ε is a subspace of this Ec,da,b by which we
would have probed the lemma. To this end we will construct the diagram shown in 3.7. We
let u2 = f c+ε,d−εa+ε and u3 = f c+ε,d−εb−ε . Now assuming we have defined Eca as some subspace of
Gca, the maps s1 and s2 are given by the interleaving due to lemma 3.6.3. That is: s1 is the
restriction of φb−ε to F d−εb−ε and s2 is the restriction of ψa to Eca and its image is guaranteed to
be in the codomain by lemma 3.6.3.

Similarly, we would like s3 to be some restriction of the map ψc, but a priori, its image is not
guaranteed to be in F c+εb−ε . By 3.6.3 we at least know that:

F c+εb−ε ⊆ ψc(G
c
b) (3.6.4)

So firstly, we need to define Ecb as some subspace of Gcb so that its image under ψc is contained
in F c+εb−ε and secondly, for reasons that will become clear in a moment, we want the image of s3

to be equal to keru3 = F c+ε,d−εb−ε . Therefore we define Ecb as the preimage of keru3 under ψc,
and by 3.6.4 the whole preimage is indeed contained in Gcb. We can now define Eca = Ecb ∩Gca.

Taking the images of the maps in diagram 3.6 we see that the domains of the functions ri
are contained in their codomain. Thus we simply define ri as the inclusion maps. Lastly, we
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Gda Gdb

F d−εa+ε F d−εb−ε

F c+εa+ε F c+εb−ε

Gca ⊆Eca Ecb⊆ Gcb

r1

r2

s1

u2

r3

u3u1

s2

r4

s3

u4

Figure 3.7: Commutative diagram of the homology vector spaces associated with
f and g. Recall that each vector space on the corner of the two boxes corresponds
to a quadrant of the corresponding persistence diagram. For example: F d−εa+ε cor-
responds to D(f)∩ [−∞, a+ ε]× [d− ε,∞]. In this way, the corners correspond to
corners of the boxes Rε and R.

define u1 as the restriction of gc,da to Eca and similarly we define u4 as the map gc,db restricted to
Ecb . Since we defined each map in the diagram as either an inclusion, or as the restriction of a
function induced by an inclusion, the diagram commutes.

Defining Ec,da,b ⊆ Gc,da,b. Recall that we defined Gc,da,b by taking the quotient of kernels of maps
between Gcb and Gca. Now we will do the same for the subspaces Ecb ⊆ Gcb and Eca ⊆ Gca to get

our vector space Ec,da,b .

First, we see that u4 = s1 ◦ u3 ◦ s3, but since Im s3 = keru3 and s1 is an inclusion: u4(Ecb) = 0.

Analogous to how we defined the vector spaces Hy,z
x we take Ec,db := Ecb = keru4. We can do

a similar thing for Eca by the equality r1 ◦ u1 = u4 ◦ r4. Since r1 and r4 are inclusions and
by the definition of Eca we have u1(Eca) = u4(Eca) ⊆ u4(Ecb) = 0. Having done this we define
Ec,da := Eca = keru1 =. We are now ready to define:

Ec,da,b := Ec,db /Ec,da = keru4/ keru1

To show that Ec,da,b is indeed a subspace of Gc,da,b we prove:

dimF c+ε,d−εa+ε,b−ε ≤ dimEc,da,b ≤ dimGc,da,b (3.6.5)

by constructing an injection from Ec,da,b to Gc,da,b.

We define the map Ec,da,b → Gc,da,b by sending each equivalence class x + Ec,da to the equivalence

class x+Gc,da . To show this is well-defined, let x, y be equivalent classes in Ec,da,b . In other words,

we have that x−y ∈ Ec,da = Eca ⊆ Gca and thus x and y are also equivalent in Gc,da,b. Now to show

that the map is injective, take x, y ∈ Ec,db but equivalent as classes in Gc,da,b. Since x− y ∈ Ec,db
by the fact that Ec,db is a vector space we have that x − y ∈ Ec,db ∩ G

c,d
a,b = Eca. Thus they are

equivalent in Ec,da,b and indeed our map is injective, proving 3.6.5.
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Proving F c+ε,d−εa+ε,b−ε ⊆ E
c,d
a,b For the last step of the proof, we show that:

dimF c+ε,d−εa+ε,b−ε ≤ dimEc,da,b (3.6.6)

by constructing a surjection from Ec,da,b into F c+ε,d−εa+ε,b−ε .

Recall that Ec,da,b = keru4/ keru1 and F c+ε,d−εa+ε,b−ε = keru3/ keru2. We define a map from Ec,da,b to

F c+ε,d−εa+ε,b−ε by mapping a class x to s3(x). To show this map is well-defined, let x, y be equivalent

classes in Ec,da,b , that is: x− y ∈ keru1. We need to show that s3(x− y) = s3(x)− s3(y) ∈ keru2.
But this is clear from commutativity of the diagram: u2◦s2(keru1) = u3◦s3(Ecb) = u3(keru3) =
0. So we map equivalent classes to equivalent classes and thus the map is well-defined.

Surjectivity of this map follows from the way we defined Ecb , namely s3(Ecb) = s3(keru1) =
keru3. Thus the 3.6.6 holds, proving the theorem.

As stated at the beginning of this section, we first prove a particular case of the Bottleneck
Stability where we assume a certain restriction on the distance between f and g. To be more
precise, we require f to be very close to g.

Definition 3.6.5. Let δf := min { ‖p− q‖∞ | p ∈ D(f)−∆, q ∈ D(f), p 6= q } and let K be a
simplicial complex. A function g : K → R is said to be very close to f : K → R when
‖f − g‖∞ < δf/2.

Lemma 3.6.6 (Easy Bijection Lemma [1]). Let f, g : K → R be monotonic functions on a
simplicial complex K such that g is very close to f . Then:

W∞(D(f), D(g)) ≤ ‖f − g‖∞

Proof. We will prove the lemma by constructing a bijection from D(g) to D(f), such that the
distance between its image and D(f) is less than ε. Let p be a point in D(f) −∆. We define
R(p, ε) to be the square centered around p with side lengths ε. Let µ be the multiplicity of p
in D(f). Now by definition of ε = ‖f − g‖∞, we have that p ∈ (D(g) ∩ R(p, ε)) so by the box
lemma:

µ ≤ #(D(g) ∩R(p, ε)) ≤ #(D(f) ∩R(p, 2ε)) = µ

The last equality follows from the assumption that g is very close to f . Indeed, this means
that 2ε ≤ δf so that p is the only element in D(f) ∩ R(p, 2ε). Thus we can map all points in
D(g) ∩R(p, ε) to p, since its multiplicity now equals µ.

Doing this for all points in D(f)−∆, the leftover points P of D(g) that are not yet mapped to
D(f) are further than ε away from D(f)−∆. We claim now that the distance of these points
to the diagonal is less than or equal to ε. Let (x, y) ∈ D(g). By the box lemma ?? and for δ
small enough:

1 ≤ #(D(g) ∩ [x− δ, x+ δ]× [y − δ, y + δ] (3.6.7)

≤ #(D(f) ∩ [x− ε, x+ ε]× [y − ε, y + ε] (3.6.8)

So for each point in D(g), there is at least one point in D(f) that is ε-close to it. Since each
point in P is further than ε from D(f)−∆, it is closer than ε to ∆. Thus we finish our bijection
by mapping each point in P to the closest point in ∆, keeping in mind that each point in ∆ has
infinite multiplicity. By construction, each point in D(g) is mapped to a point in D(f) that is
not further than ε away, proving the lemma.
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We now prove the main theorem of the section. This is the general case where we drop the
condition that g is very close to f .

Proof of theorem 3.6.2 Let ht := tf + (1 − t)g be a linear interpolation between f and g
for t ∈ [0, 1]. Let σ be a face of τ in K. Then by monotonicity of f and g:

ht(σ) = tf(σ) + (1− t)g(σ) ≤ tf(τ) + (1− t)g(τ) = ht(τ)

So ht is also monotonic for all t.

Let c := ‖f−g‖∞ and δ(λ) := δhλ . Then the sets Jλ := (λ−δ(λ)/4c, λ+δ(λ)/4c) with λ ∈ [0, 1]
form a cover of [0, 1]. By compactness of [0, 1] there is a minimal finite subcover C of [0, 1]. Let
λ1 < ... < λn be the midpoints of the intervals Jλi in C. Since C is minimal Jλi ∩ Jλi+1

6= ∅ so
that by construction of Jλ we have:

λi+1 − λi ≤ δ(λi+1) + δ(λi)/4c (3.6.9)

≤ max{δ(λi+1), δ(λi)}/2c (3.6.10)

For 1 ≤ i ≤ n − 1. By minimality of C, we have 0 ∈ Jλ1 and 1 ∈ Jλn so that defining λ0 := 0
and λn+1 := 1 we have that the inequality also holds for 0 ≤ i ≤ n.

To apply 3.6.6 to each pair hλi , hλi+1 , we need that hλi is very close to hλi+1 or vice versa.
Indeed this is the case. By definition of ht and using inequality 3.6.9:

‖hλi+1 − hλi‖∞ = (λi+1 − λi)‖f − g‖∞ (3.6.11)

≤ max{δ(λi+1), δ(λi)}
‖f − g‖∞

2c
(3.6.12)

= max{δ(λi+1), δ(λi)}/2 (3.6.13)

So W∞(D(hλi+1
), D(hλi)) ≤ ‖hλi+1

− hλi‖∞.

Now using 3.6.6 and the triangle inequality:

W∞(D(f), D(g)) ≤
n∑
i=0

W∞(D(hλi+1), D(hλi)) (3.6.14)

≤
n∑
i=0

‖hλi+1 − hλi‖∞ (3.6.15)

=

n∑
i=0

(λi+1 − λi)‖f − g‖∞ = ‖f − g‖∞ (3.6.16)
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