View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        Water segmentation and classification

        Thumbnail
        View/Open
        report.pdf (8.409Mb)
        Publication date
        2013
        Author
        Mettes, P.S.M.
        Metadata
        Show full item record
        Summary
        In this work, a unified approach to water detection in videos is provided from both a discriminative and generative perspective. Although the automatic detection of water entails a wide range of applications, little attention has been given to solve this specific problem. Current literature generally treats the problem as a part of more general recognition tasks such as material recognition or dynamic texture recognition, without distinctively analysing and characterizing the visual properties of water. In order to compensate for this lack of information, a discriminative algorithm is presented here by introducing a hybrid descriptor based on the joint spatial and temporal behaviour of local water surfaces. Furthermore, this work provides a mathematical analysis and intuitive interpretation of linear latent variable modeling for dynamic texture classification. Based on the analysis, a set of improvements is proposed for the purpose of generative water detection specifically. In addition, a novel water database is presented in this work, which goes beyond databases from related fields in terms of quantity and variety of both natural and man-made water scenes. Both perspectives are experimentally evaluated on this database and a subset of the DynTex database for the tasks of video segmentation and classification. The experimentation performed on these two tasks indicate the effectiveness of the introduced algorithms for discriminating water from other but related dynamic and static surfaces and objects, outperforming well-known algorithms from directly related fields. The algorithms and database presented here form a basis of the relatively unexplored problem of water detection and can lead to tackling new problems such as (near) real-time detection, large-scale detection in images, and detection with camera movement.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/14908
        Collections
        • Theses
        Utrecht university logo