View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        Monodromy of the generalized hypergeometric equation in the maximally unipotent case

        Thumbnail
        View/Open
        monodromy.pdf (939.0Kb)
        Publication date
        2013
        Author
        Molag, L.D.
        Metadata
        Show full item record
        Summary
        We consider monodromy groups of the generalized hypergeometric equation z(θ − α1 ) · · · (θ − αn ) − (θ + β1 − 1) · · · (θ + βn − 1) f (z) = 0 where θ = zd/dz. We pay particular attention to the maximally unipotent case, where β1 = . . . = βn = 1, and present a theorem that enables us to determine the form of the corresponding monodromy matrices in a suitable basis in the case where (X − e^−2πiα1 ) · · · (X − e^−2πiαn ) is a product of cyclotomic polynomials. A similar result is obtained for general α1 , . . . , αn ∈ Q, where the entries of the monodromy matrices are expressed with the Hurwitz zeta function. In particular, this result gives us an idea of the transcendental numbers to be found in the monodromy matrices.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/14895
        Collections
        • Theses
        Utrecht university logo