View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        Best approximations in normed vector spaces

        Thumbnail
        View/Open
        bachelor_thesis.pdf (556.6Kb)
        Publication date
        2018
        Author
        Vries, M.P. de
        Metadata
        Show full item record
        Summary
        We investigate which subsets of normed vector spaces are Chebyshev, that is, they admit a unique best approximation for every vector. We show that a subset of a strictly convex uniformly smooth finite-dimensional normed vector space is Chebyshev if, and only if, it is non-empty closed and convex. We also show that any non-empty closed convex subset of a strictly convex reflexive normed vector space is Chebyshev. We finally take a look at a few examples of applicable normed vector spaces and a few counter examples to some intuitions one might have.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/779
        Collections
        • Theses
        Utrecht university logo