Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorÖnal Ertugrul, I.
dc.contributor.authorChen, Sylvia
dc.date.accessioned2023-08-10T00:01:49Z
dc.date.available2023-08-10T00:01:49Z
dc.date.issued2023
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/44557
dc.description.abstractAutomatic Pain Assessment (APA) through facial expressions meets the challenge of limited pain expression data and imbalanced pain levels. Traditional data augmentation schemes do not contribute additional semantic information about the infrequent label. In this paper, we propose a novel data augmentation scheme using Generative Adversarial Networks (GANs).
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectAU-based Painful Dataset Augmentation Using GAN Network
dc.titleRealistic Painful Expression Synthesis Using Generative Models
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsPain Expression; Data Augmentation; GAN; Action Units
dc.subject.courseuuGame and Media Technology
dc.thesis.id21489


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record