
utrecht university
Thesis for Msc Game and Media Technology

INFOMGMT

Realistic Painful Expression
Synthesis Using Generative Models

Authors:
Yuyu Chen

Student Number: 9752129
y.chen24@students.uu.nl

Supervisor:
Assist. Prof. Dr. I.Önal Ertuğrul

i.onalertugrul@uu.nl

Second examiner:
Assist. Prof. Dr. Z.Yumak

z.yumak@uu.nl

July 21, 2023



Abstract

Accurate pain assessment is crucial to understand the severity of a patient’s
condition and for developing appropriate treatment. In recent years, a new re-
search trend has focused on Automatic Pain Assessment (APA) through facial
expressions. Compared to human observation, it provides continuous monitor-
ing and a more objective assessment. Moreover, it also holds potential bene-
fits for patients with severe cognitive or communication impairments. So far,
many learning-based approaches have been proposed through facial expressions.
However, these methods often did not generalize well to real-world conditions,
primarily due to the lack of diverse pain-related facial expression data.

Traditional data augmentation methods have been used to expand the facial
painful expression dataset, but they only provide limited diversity. Generative
Adversarial Networks (GANs) is a promising technique. This project mainly
focuses on the application of GANs to generate synthetic but realistic facial
pain expressions, aimed at effectively augmenting the existing dataset. We have
selected the UNBC-McMaster dataset for augmentation, a database widely rec-
ognized in the APA field. Our analysis of this dataset identified a number of
issues, including insufficient data volume, imbalanced distribution of data labels
and the range of head pose.

To overcome these challenges, we propose a novel method. First, we imple-
ment GANimation, a network that enables us control over the activation mag-
nitude of each Action Units (AUs), allowing for their combination into desired
expressions. We then fine-tune this network with the UNBC-McMaster dataset,
promoting within-domain generation to reduce domain variance. Additionally,
a 3D registration technique is applied throughout both the training and testing
phases to counter the issue of head pose range problems in the original dataset.
Finally, We propose an innovative scoring mechanism that allows us to generate
high-quality and diverse pain expressions through the fine-tuned GANimation
network. With the proposed method, we can effectively create balanced and
sufficiently diverse pain datasets.

In the experiment evaluation, we first assess the quality of the generated
images using both quantitative and qualitative evaluation methods. The results
demonstrate a significant improvement in the quality of the fine-tuned GANima-
tion network compared to the images generated without fine-tuning. Then, we
employ the Fréchet Inception Distance (FID) metric to evaluate the overall qual-
ity of the augmented dataset. The effectiveness of the proposed 3D registration
technique is validated here. Outcomes show that the synthetic dataset gener-
ated based on the scoring mechanism is closely to the original, especially when
using 3D-registered images as inputs. Lastly, we train the synthetic dataset for
classification using existing Convolutional Neural Networks (CNN). The results
indicate that the synthetic dataset has the potential ability to improve current
APA classification algorithms.
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1 Introduction

How much does it hurt? In the medical field, pain assessment is not only criti-
cal for characterizing pain and identifying underlying mechanisms but can also
guide the decision-making process regarding pharmacological treatment [1]. Ac-
cordingly, it is believed that a valid and reliable assessment of pain is essential
for both clinical trials and effective pain management [2]. Unfortunately, pain is
not always adequately assessed and managed, due to its complex and subjective
nature [3] and the lack of accurate physiological or clinical signs for objective
pain measurement [4].

Currently, the gold standard of pain assessment for both the presence and in-
tensity is self-report of patients, in line with the clinical definition of pain, which
states, "Pain is whatever the experiencing person says it is, existing whenever
he/she says it does" [5]. However, this method isn’t universally applicable. In-
fants or patients with severe cognitive or communication limitations may not be
able to give a self-report of their pain verbally, in writing, or by other means
such as a finger span [6] or eye blinking to indicate yes or no responses [7].
Several studies have already shown that these patients often receive less pain
medication compared to those who can verbally express their pain [8]. In this
context, it becomes crucial to assess pain through behavioural indicators such
as facial expressions, vocalizations, and body movements [9]–[11]. These be-
havioural indicators can provide critical insights into pain, which forms the basis
of Automated Pain Assessment (APA).

Among all behavioural indicators, facial expression is considered to be the
most prominent and salient nonverbal pain behaviour [12]. Since researchers
have already demonstrated that facial responses to pain have very promising
diagnostic validity [13], there have been significant efforts towards identifying
reliable and valid facial indicators of pain. As a result, increasing research
attention is being focused on the development of APA based on facial ex-
pressions. In particular, advanced information technologies such as machine
learning, computer vision has been used to this field recently [14]. For instance,
the latest research presents a novel enhanced deep neural network framework
specifically designed for the effective detection of pain intensity [15]. These
approaches offer the ability of continuous pain monitoring, compared to the tra-
ditional assessments performed by human observers, which has the potential
to prevent delayed treatment due to missing severe pain events. Additionally,
it may provide a more objective assessment compared to the human observer,
whose judgment could be biased by personal factors such as their relationship
with the patient [16] or even the patient’s physical appearance [17].

Nevertheless, a significant limitation of these approaches is a lack of painful
data. Acquiring appropriate data is challenging, especially for populations like
infants, critically ill patients, elderly or cognitively impaired patients due to
ethical concerns [18]. Yet, Facebook [19] and Google [20] have already demon-
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strated the importance of large-scale datasets in developing high-quality models.
Learning-based approaches rely heavily on large and complex training sets to
generalize well in unconstrained environments.

To overcome this challenge, we aim to use data augmentation schemes
[21], effectively increasing the amount and diversity of data. Typically, data
augmentation consists of simple modifications to the dataset images, such as
panning, rotating, flipping, and scaling. But the diversity obtained from those
typical methods is limited [22], leading to the need for synthetic data examples
[23]. In this project, we aim to generate synthetic facial expression data of pain
to enrich the dataset effectively.

Generative adversarial networks (GAN) are one of the promising techniques
for the synthesis of images [24], including the generation of high-quality realistic
natural facial expressions [25]–[27]. Here, we focus on using the GAN framework
to synthesise high quality painful expressions for data augmentation. Therefore,
the following research questions and corresponding sub-questions are defined for
this research project:

• Primary Research Question
How can the application of GANs be utilized to generate synthetic but
realistic facial pain expressions, with the goal of effectively augmenting
the existing dataset?

Based on this research question and the previous research analysis, the
three sub-questions are as follows.

– Sub-research Question I Can the dataset augmentation scheme
generate realistic or high-quality synthetic pain expressions?

– Sub-research Question II
How does applying 2D and 3D face registration before pain expression
generation impact the performance of the model?

– Sub-research Question III
What is the potential impact of the synthetic pain expression dataset
on the performance of existing APA approaches?

In the following sections, we will further develop these problems and explore
possible solutions. The remaining sections of this paper are organized as follows:
Section 2 gives an overview of related work. Next, section 3 describe the selected
painful dataset in this project. The details of our unique approach are then
articulated in Section 4, where we elaborate on the specifics of our proposed
methodology. Finally, Section 5 and 6 provides an evaluation of the results and
a discussion of the proposed solution, respectively.
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2 Related work

In this section, we provide some basic knowledge of this project. First, we
give an overview of the APA method, which focus on the current learning-
based approaches. This is followed by an in-depth exploration and analysis of
pain-induced facial expressions. Besides, we describe data augmentation, the
existing solutions to current challenges. Finally, we emphasise the potential of
Generative Adversarial Networks (GANs) as promising tools to address these
challenges, laying the groundwork for the methodological advances introduced
by this project.

2.1 Overview of Automatic Pain Assessment

Pain Assessment differs from pain recognition or detection, which focuses
on identifying the presence or absence of pain. It is primarily quantifies the
intensity of pain, answering the question [28], how much does it hurt? Clinically
speaking, pain intensity is defined as the magnitude of experienced pain. There
are usually two methods to measure pain intensity:

• Self-report.
Self-report is commonly considered as the standard for pain assessment
due to the subjective nature of pain. It is considered patient-centred and
offers retrospective accounts of events, experiences, and behaviour. It is
also a convenient and cost-effective method of assessment [16]. The most
common strategies are verbal rating scales (VRSs), numerical rating scales
(NRSs), visual analog scales (VASs), and graphical scales, see Fig.1.

(a) (b) (c)

Figure 1: Common strategies of self-report [29]: (a) An example of verbal rating scales. (b)
An example of numerical rating scales. (c) An example of visual analog scales.

Several clinical studies have verified the accuracy and reliability of self-
reported assessment, advocating that they should be used whenever pos-
sible [30]. However, it is important to note that these methods require
cognitive abilities and functioning from the individual, and this may not
always be the case. Additionally, self-report may be influenced by factors
such as reporting bias, memory discrepancies, and variations in verbal
aptitude [31] as they are a controlled and goal-oriented response.
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• Observational Scales.
The observation scale is typically employed when the patient displays se-
vere cognitive impairment or has difficulties with communication. The
American Geriatrics Society Panel on Persistent Pain in Older Persons
published six common pain indicators: facial expressions, verbalizations
or vocalizations, body movements, changes in interpersonal interactions,
changes in activity patterns or routines, and mental status changes [32].

However, this method presents significant challenges and is susceptible
to subjective bias and observer errors in judgment [33]. Furthermore,
it is not possible for human caregivers to provide constant monitoring of
patients, which may result in missed instances of pain or delayed detection
of changes by the human observer.

Indeed, both self-reported and observational scales have limitations that may
lead to inadequate pain management, particularly for critically ill patients where
such shortcomings can be life-threatening [34].

To address these limitations, Automated Pain Assessment (APA) has
been proposed as an attractive alternative to traditional pain assessment meth-
ods with the goal of reducing both reporting bias from patients and observing
bias from physicians. Besides, this approach enables continuous, automatic, and
real-time pain assessments, enabling prompt responses by physicians to improve
the overall patient experience.

A typical process for APA, as illustrated in Fig.2, typically involves the
following steps:

Figure 2: General steps involved in automatic pain assessment

Specifically, the process involves the collection of signals related to pain,
followed by pre-processing such as data cleaning, and feature extraction. After-
wards, the acquired signals are evaluated by different recognition approaches,
such as pattern matching or machine learning algorithms, to produce the final
pain assessment results. To date, numerous studies have explored the use of
various modalities, either singularly or in combination, for signal acquisition in
automated pain assessment.

Generally, it can be broadly divided into signals based on physiological re-
sponses and behavioural responses. In specific, physiological responses to pain
stem from neural interactions [35] that lead to changes in various physiological
signals [36], such as heart rate variability [37], skin conductance or electro-dermal
activity [38], electromyography [39], electroencephalography [40], and functional
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magnetic resonance imaging (fMRI) [41]. On the other hand, behavioural re-
sponses involve protective and communicative actions [42], such as vocalisations
[9], body movements [11] and facial expressions [43].

Compared to signals based on physiological responses, behaviour-based sig-
nals can be recorded in a contactless and non-intrusive manner. Additionally,
some physiological response-based signals, such as those based on brain acti-
vation, are often limited to experimental pain conditions and are both costly
to obtain and require extensive preparation, particularly for EEG recordings.
Given these considerations, behavioral responses are often the preferred choice
for signal acquisition in many studies. In the context of this research project,
we specifically focus on facial expressions as the acquired signal.

So far, only a few studies have focused on APA compared with automatic
pain recognition or detection. Here are some representative works in recent
years.

• AAM/SVM system
This approach [44] was proposed in 2012 by the same authors who pub-
lished the database. It is called AAM/SVM system. The Active Appear-
ance Model (AAM) was used to track the face and extract visual features.
Support vector machines (SVMs) were then used to classify individual
action units as well as pain, see Fig.3.

Figure 3: Examples output of AAM/SVM system [44]

In the experiment part, it used the area under the receiver-operator charac-
teristic (ROC) curve (AUC) as the performance measure. The best overall
performance of 81.8 is achieved by fusing several features.

• Hidden Markov Model (HMM) learning
Wu et al. [45] formulate expression recognition as a multi-instance learning
problem. A discriminative multi-instance Hidden Markov Model (HMM)
learning algorithm is proposed, where the HMM is used to capture the
dynamics within instances.

In the experiment part, the leave-one-subject-out cross-validation method
is implemented. Furthermore, the ground truth here is the observed pain
intensity (OPI), which ranges from 0 (no pain observed) to 5 (extreme pain
observed). The experimental results show that the algorithm achieves an

8



accuracy of 85.23% and an Fl-score of 0.78, which also proves the effec-
tiveness of the algorithm.

• Recurrent Convolutional Neural Network Regression
Zhou et al. [46], a Recurrent Convolutional Neural Network (RCNN) based
real-time regression framework is proposed. See Fig.4 as the resulting
output.

Figure 4: Examples output of RCNN regression framework [46]

The green line is the result of the proposed method. As we can see, the
output is stable and smooth, and can also avoid unstable jumps or peaks
among frames.

In the quantitative analysis phase, 25-fold cross-validation was used to
assess the method. The average Mean Squared Error (MSE) and Pearson
Product-moment Correlation Coefficient (PCC) were applied as the per-
formance metrics. And promising results of the average MSE and PCC
of 1.54 and 0.65 were got respectively. Furthermore, the approach can be
performed in real time and has a high computational efficiency.

• A Joint Deep Neural Network Model
Bargshady et al. [47] proposed another method called joint deep network.
It uses a hybrid method to solve the classification problem of the pain data
in four classes (no pain, weak pain, mid pain, and strong pain). Specifically,
the method uses two different recurrent neural networks (RNNs). Both of
them were pre-trained in a Visual Geometric Group Face Convolutional
Neural Network (VGGFace CNN) and connected together as a network to
estimate pain intensity levels. Here, the VGGFace model is designed for
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face recognition and uses millions of face images for training. The whole
process is given in Fig.5

Figure 5: The architecture network model including VGGFace [47]

As we can see, firstly VGGFace is finetuned and used for feature extrac-
tion. Then, in the experiment part, the performance of the various mod-
els (Convolutional Neural Network (CNN), Deep Convolutional Networks
(DCNs)) in the pre-training scenario are compared and evaluated against
each other.

The experiment metrics are the accuracy and the area under the Receiver-
Operator Characteristic curve (AUC). Besides, leave-one-out cross-validation
was applied. The results are shown in the table.

Model Accuracy AUC

CNN 54.45% 44.8%
VGGFace+CNN 57.3% 52%

VGGFace +DNN1 + DNN2 73% 58.5%
Bargshady et al [47] 75.2% 82.7%

Table 1: Accuracy and AUC obtained in [47]

The final result of a joint deep neural network model is 75.2% accuracy
and 82.7% AUC.

• Ensemble Deep Learning Model
In 2020, Bargshady et al. [48] proposed an ensemble deep learning ap-
proach. The resulting Ensemble Deep Learning Model (EDLM) integrates
three streams of independent CNN-RNN-based networks. In the mean-
time, features were extracted from the facial images using a fine-tuned VG-
GFace algorithm combined with a Principal Component Analysis (PCA)
method.
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To enable a rigorous evaluation of the proposed EDLM model, various per-
formance measures are used, including the Classification Mean Absolute
Error (MAE), Mean Squared Error (MSE), Accuracy, Area under the ROC
Curve (AUC) and F-score were utilized. And 10-fold cross-validation
was used for training and evaluation. The average performance of the
proposed model is in table 2.

MSE MAE Accuracy AUC

0.081 0.103 86% 90.5%

Table 2: The average performance of EDLM model [48]

The EDLM model shows good performance, including the feature extrac-
tion part.

The above representation is arranged in the order of publication time. We can
see that recent research has demonstrated a significant interest in using various
learning-based approaches, particularly deep learning, for APA. However, even
the latest methods [48] only achieve an accuracy rate of 86%, which is not exactly
an ideal result and there is still room for improvement.
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2.2 Painful Data of Facial Expressions

We first provide a specific description as well as a detailed analysis of the acquired
signal - the painful expressions.

Facial expressions have been widely recognized as a reliable indicator of pain
intensity in behaviour-based signals. A change in facial expression can be seen
as a change in pain intensity [49]. Several studies have already encoded pain
as a series of action units (AU) based on the Facial Action Coding System
(FACS). The Facial Action Coding System (FACS) [50] was originally developed
by Ekman and Friesen. It is an anatomically based classification system for facial
movements that examines the changes in shape and appearance produced by the
facial muscles. Each muscle movement is considered to be an action unit (AU),
see Fig.6 as an example.

Figure 6: Action Units in the Facial Action Coding System (FACS) [51]

FACS has 44 AUs in total which can be used to measure emotional stimuli.
In other words, using FACS, human coders can manually encode almost any
anatomically possible facial expression, deconstructing it into specific action
units (AU) and the time periods during which they produce it.

As for the pain, it was relatively consistent across a range of clinical pain
conditions and experimental pain patterns [52]. So, pain expression is widely
characterised by the activation of a small group of facial muscles and can be
encoded by a set of corresponding action units (AUs): brow lowering (AU 4),
orbital tightening (AU 6 and AU 7), levator labii raise (AU 9 and AU 10) and
eye closure (AU 43) [53], see Fig. 7.

Figure 7: Examples of facial expressions associated with pain [54]
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Then, for the purpose of pain assessment, the Prkachin and Solomon Pain
Intensity (PSPI) metric [55] has been wildly used in current research. This is
a well-validated method of measuring pain based on the Facial Action Coding
System (FACS). In PSPI scale, each of the action units are measured on a six-
point ordinal scale (0 = absent, 5 = maximum). The pain formula is defined
as:

Pain = AU4 +max(AU6∥AU7) + max(AU9∥AU10) + AU43 (1)

Here, AU43 can be either 0 or 1, while the other Action Units (AU4, AU6,
AU7, AU9, and AU10) can have a maximum of 5 intensity levels. The resulting
pain scale is composed of 3 ∗ 5 + 1 = 16 levels.

Until now, many studies of APA based on facial expressions have been pro-
posed on predicting Prkachin and Solomon’s Pain Intensity Index (PSPI), which
measures pain as a linear combination of facial action units.
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2.3 Data Augmentation

As we mentioned in 2.1, the state-of-the-art method of APA still faces signifi-
cant challenges. One of the main problems is that these learning-based models,
particularly deep learning models, are typically driven by the large size of the
networks reaching millions of parameters [56]. Since these models are already
inherently complex, several efforts to improve the generalization performance of
these models have resulted in the development of increasingly intricate architec-
tures [21], such as AlexNet [22] to VGG-16 [57], ResNet [58], Inception-V3 [59],
and DenseNet [60]. For instance, the well-known Convolutional Neural Network
(CNN) architecture, VGG16, consists of 16 layers of neurons and contains a
total of 138 million parameters. These kinds of large networks are heavily re-
liant on large amounts of high-quality data for training to avoid overfitting in
order to ensure good generalization. Therefore, it is clear that data serve as
the foundation for the development of a learning-based approach for
APA.

As we mentioned in 2.2, a major challenge in moving forward with APA is the
difficulty of collecting and annotating data. The usual data acquisition process
is to record videos of cognitively healthy individuals by experimentally inducing
acute pain and other distressing states in a controlled laboratory setting.

So far, several datasets are available for automated pain assessment. Here,
some publicly available datasets are listed for details in Table 3.

Database Subjects Sample Size

Infant COPE [61] 26 neonates 204 facial images
UNBC-McMaster [62] 25 shoulder pain patients 200 image sequences

BioVid [63] 90 healthy adults 8700 videos
Hi4D-ADSIP [64] 80 healthy adults 3360 3D sequences

BP4D-Spontaneous [65] 41 healthy adults 328 3D videos

Table 3: Public painful dataset

Different pain induction methods were used to create the different painful
datasets. For instance, the BioVid dataset employs heat stimuli under lab con-
ditions to induce acute pain, while the BP4D-Spontaneous dataset utilizes cold
stimuli. Besides, there are different annotation methods to describe facial ex-
pressions and the pain or emotion experienced. Common methods include self-
report, observer scale, stimulus type, stimulus level, and AU-based scores. Some
datasets, such as UNBC-McMaster offer multiple forms of annotation. All
these databases have significantly contributed to advancements in APA.

However, compared to large datasets in other fields such as ImageNet [66]
with over 14 million images, or Facebook’s DeepFace system [67] trained on
a dataset of 4 million facial images, the above-mentioned datasets are much
smaller, often consisting of thousands rather than millions of samples. This can
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be due to a number of reasons. First, collecting and annotating data related to
pain expression is challenging. Pain, particularly chronic pain, is a complex and
subjective phenomenon that is difficult to accurately capture and label. Privacy
and ethical considerations also limit the amount of data that can be collected.
In the context of APA, Despite its potential for measuring pain intensity, FACS
is time-consuming and subjective. First, it requires manual coding by trained
experts who need to take over a hundred hours of training to become proficient
[68]. In fact, well-trained FACS specialists need about two hours to annotate a
one-minute video. It is also a subjective way and therefore prone to bias. As a
result, providing manually FACS annotated frames in the databases is difficult
in the APA field. Therefore, the dataset currently available for APA can be
considered small.

Although functional solutions such as dropout regularisation, batch normali-
sation, migration learning and pre-training have been developed to try to extend
deep learning to applications on smaller datasets, data augmentation still ad-
dresses overfitting from the root of the problem [21].

Data augmentation is a frequent technique used in deep learning to in-
crease the amount of data by generating new data from existing data, making
the dataset more diverse. It can be seen as a regularisation technique used to
reduce the generalisation error of the model [69]. It is usually classified into two
main categories, basic image manipulations (such as flipping, transposing,
and colour space manipulations) and deep learning approaches (for example,
on GANs) [70].

As for the first categories, it typically consists of simple modifications to
the dataset images such as translation, rotation, flip and scale. See Fig.8 as an
example.

Figure 8: Example of data augmentation approach [71]

This has been already used in the painful expression dataset. For instance,
Huang et al. [72] use such traditional methods including noise addition, con-
trast adjustment, brightness adjustment and image inversion in the UNBC-
McMaster dataset, see Fig.9. After these approaches, the database is expanded
more than 10 times.

While the above-mentioned techniques provide some relief, they do not get
to the core of the problem. Techniques like typical data augumentation methods
only provide limited diversity of data. This has inspired the use of deep learning
approaches to generate synthetic data which can introduce more variability.
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Figure 9: Data visualization after data augmentation in [72]

Synthetic data is artificially generated information as an alternative to real-
world data [73]. Besides, it provides detailed ground truth annotation and is a
low-cost and scalable alternative to manually annotating images [74]. As a result,
the generation of synthetic data is increasingly used to overcome the burden
of creating large datasets for training learning models, especially deep neural
networks [75]. There are many methods of data synthesis, such as realistic image
rendering and learning-based image synthesis [75]. Among the various methods,
Generative Adversarial Networks (GANs) [76] are considered as a promising
method.

So far, GAN has already been applied to many domains and data argumen-
tation in one of them. Recently, researchers have shown great enthusiasm for
GAN-based image synthesis for data augmentation. For instance, a recent study
[77] using synthetic data generated by GAN to train cancer detection algorithms
has achieved striking results. The results show that compared with training on
an original dataset, the algorithm performs better on synthetic data. Besides,
Niinuma et al. [78] has already demonstrated that networks trained on synthetic
facial expressions outperform networks trained on actual facial expressions too.
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2.4 Generative Adversarial Network (GANs)

Generative Adversarial Network (GAN), as its name implies, is a generative
model that learns to make realistic data adversarially [79]. It is inspired by
game theory, where generators and discriminators compete with each other in
the training process [80]. The general architecture of GAN is illustrated in Fig.10

Figure 10: The architecture of generative adversarial networks (GAN) [81]

As we can see, a GAN has two parts:

• Generator G
The principle of generator G is to generate fake data to fit the potential
distribution of the real data as much as possible. Specifically, the input of
G is random noise z often with a uniform or normal distribution. Then
the generated instances G(z) become negative training examples for the
discriminator D.

• Discriminator D
Discriminator D is a binary classifier to determine whether the given is
"real" or not. It takes both the real samples from training set and G(z) as
input X. The output is the probability D(X) that the sample is real.

Then, the training process proceeds in alternating period [82]:

1. The D trains for one or more epochs.

2. The G trains for one or more epochs.

3. Repeat steps 1 and 2 until the model convergence.

Notice, the parameters of G are kept constant during the training phase of D
and vice versa.

In the training process, the goal of G is to generate images G(z) as realistic as
possible to deceive D, while D’s goal is to try to separate the images generated
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by G from the real ones. In this way, D and G constitute a dynamic adversarial
process. The final result is that, in the optimal state, G can generate a picture
G(z) that is sufficiently "fake" to be true. In other words, for D , it is difficult
to determine whether the image generated by G is real or not, i.e. a Nash
equilibrium is reached, so that D(G(z)) = 0.5. At this point, the convergence
goal of the model is for G to be able to generate real data from random noise.

The above are the core ideas of GAN. In mathematical terms, as described
by Goodfellow and his co-authors in the original paper [76], in GAN, G and D
use a joint loss function, where G tries to minimise the function and D is trying
to maximise it. The specific formula in the paper is as follows:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2)

Here, D(x) corresponds to a loss of two items which are Ex∼Pdata [log(D(x))]
and Ez∼Pz [log(1 − D(G(z)))] respectively. The log(x) monotonically increasing
over [0, 1] because D(x) ∈ [0, 1]. Thus, we expect the real data D(x) to converge
to 1, so the expectation of the first term increases. Then, in the second term,
D(G(z)) is the expectation of the generated data. It tends to approach 0 and is
incremental. So, the overall expectation corresponding to D(x) is larger which
means max(D). As for G, the loss is Ez∼Pz [log(1 − D(G(z)))]. We want the
generated data to be closer to the real data, so D(G(z)) converges to 1 and the
overall expectation is smaller, i.e. min(G). In summary, the discriminator D
aims to maximize loss and the generator G aims to minimize loss. Therefore,
this process is also known as a two-player min-max game.

Essentially, the above-introduced is the concept of GAN which provide a
broad framework. It has motivated the development of various GAN-based vari-
ants, which have proven effective in addressing practical challenges in a variety
of applications and scenarios. Here, we will introduce some popular variants of
GAN:

• Deep Convolutional GAN
Deep Convolutional Generative Adversarial Networks (DCGAN) [83] was
the first structure that adopted convolutional networks into GAN. Before
this work, CNN-based GANs have been unsuccessful. In this paper, a
series of effective constraints on the network structure is proposed to make
the training of CNN-based GANs more stable. The main contributions
are:

– Replacing all pooling layers with convolution in both generator and
discriminator.

– Removal of the fully connected layer, such as global average pooling.

– Use Batch Normalization in both the generator and discriminator.
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Figure 11: The Generator of DCGAN [80]

See Fig.11 as a visualization of an example model architecture
DCGAN has greatly improved the stability of GAN training and the qual-
ity of the generated results.

• Conditional GAN
Conditional Generative Adversarial Networks (CGANs) [84] is another ex-
tension to the original GAN. As the name implies, it allows the GAN to
produce results that are conditional, that is, the final output can be con-
trolled by artificially changing the vector of inputs (See Fig.12). Specifi-
cally, both the generator and the discriminator can add additional infor-
mation y as a condition. Here y can be any information, such as category
information, or other modal data. The optimization process of CGAN is

Figure 12: The CGAN [84]

a binary minimal maximal game problem with conditions:

min
G

max
D

V (D,G) =Ex∼p data(x)[logD(x | c)]

+ Ez∼p(z)[log(1−D(G(z | c)))]
(3)

Compared with GAN, one of the main advantage of CGAN is that it can
generate data with user-defined properties.

• Cycle GAN
Cycle-Consistent Adversarial Networks (CycleGAN) [85] is widely used in
domain adaptation. Sample data can be converted without pairing, for
example zebra to horse, see Fig.13.
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Figure 13: Example of image transformation [85]

Unlike the previously mentioned GANs, CycleGAN has two discriminators
and two generators. As it is shown in Fig.14, the horse is passed through
generator G to produce a picture of a zebra with its original shape. Im-
mediately afterwards, another generator F is used to restore the freshly
generated zebra picture to the previous horse’s shape. Finally, two dis-
criminators are used to determine the authenticity of the generated zebra
and the real horse respectively. And vice versa.

Figure 14: Network Architecture of CycleGAN [86]

During training, the discriminator and the generator are trained separately.

As for the loss function, the Loss of CycleGAN consists of two parts:

Loss = LossGAN +Losscycle (4)
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Losscycle refers to the Cycle Consistency Loss. It is a guarantee that the
output image of the generator is only different in style from the input
image, while the content is the same. For instance, in the training of
horse to zebra, the generator generates a picture of a zebra. At this time,
if the shape of the generated zebra differs significantly from the original
horse, but the generated zebra is particularly realistic, then this is not
what we expect. The Cycle Consistency Loss is to prevent this kind of
situations. When the horse image is passed through the two generators
and reconstructed back to the original horse, the two images are subtracted
to calculate the difference between them. If the distance between the two
is approximately smaller, that means that the two images are more similar.
The specific formula is as follows.

Loss cycle = Ex∼pdata (x) [∥F (G(x))− x∥1]
+ Ey∼pdata (y) [∥G(F (y))− y∥1]

(5)

On the other hand, LossGAN is to ensure that the generator produces a
more realistic picture, with the following formula.

LossGAN = LGAN (G,DY , X, Y ) + LGAN (F,DX , X, Y )

= Ey∼pdata (y) [logDY (y)] + Ex∼pdata (x) [log (1−DY (G(x))]

+ Ex∼pdata (x) [logDX(x)] + Ey∼pdata (y) [log (1−DX(F (y))]

(6)

Overall, CycleGAN is a ring-shaped structure consisting of two generators
and two discriminators. Compared to other Domain Adaptation models,
such as Pix2Pix [87], it requires data from only two domains, without the
need for a strict matching relationship.

• Wasserstein Gans
Wasserstein Generative Adversarial Networks (WGAN) [88] have been pro-
posed by optimizing the objective function while the previous-mentioned
methods optimize the architecture of GANs.

It first theoretically analyses the problems of the original GAN and thus
gives targeted improvement points in literature [89]. Then, compared
to the original GAN implementation process, WGAN has changed four
things:

1. The last layer of the discriminator removes the sigmoid.

2. Generators and discriminators do not take log for the loss.

3. After each update of the discriminator parameters cut off their abso-
lute value to no more than a fixed constant c.

4. No need for momentum-based optimization algorithms, including Mo-
mentum and Adam, RMSProp, SGD recommended
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After these changes, WGAN achieves the following:

1. A thorough solution to the problem of unstable GAN training. This
removes the need to carefully balance the training levels of generators
and discriminators.

2. It helps in avoiding the issue of the generator producing a limited
variety of samples, known as collapse mode [90], and ensuring the
diversity of the generated samples.

3. The training process has a numerical value to indicate the progress of
the training. A smaller value means that the GAN is better trained,
in other words, the better quality of the images produced by the
generator.

4. All of the above benefits can be achieved with the simplest of multi-
layer fully connected networks.

Overall, WGAN solves the problem of training instability and provides a
reliable metric of the training process that is highly correlated with the
quality of the generated samples.

• WGAN-GP
Although WGAN has made progress in stable training, it can sometimes
generate poor samples and still be challenging to converge. The weight
clipping strategy used in WGAN to enforce the Lipschitz constraint on
the discriminator restricts the weights to a fixed range, which can cause
several issues during training. For instance, in some cases, it may limit
the learning capacity of the network and prevent the discriminator from
adequately discriminating between real and generated samples. To address
this issue, Gulrajani et al. [91] proposed WGAN-GP as an improvement
to WGAN. Here GP refers to Gradient Penalty.

In WGAN-GP, the weight clipping method is replaced with a gradient
penalty term, where the norm of the gradient of the discriminator with
respect to its input (i.e., the generated image) is constrained to a fixed
value.

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]︸ ︷︷ ︸
Original discriminator loss

+λ E
x̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]
︸ ︷︷ ︸

The gradient penalty

. (7)

As we can see, the differences between WGAN and WGAN-GP may appear
subtle, as both use the same regular term, called GP (gradient penalty),
to improve the Lipschitz constraint on the discriminator. However, in
WGAN-GP, the GP term is added acting as a regularization penalty that
constrains the norm of the gradient of the discriminator with respect to its
input. By imposing this additional constraint, the WGAN-GP approach
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avoids the problems of weight clipping in WGAN and ensures that the
discriminator learns a smoother decision boundary. This simple change
leads to more stable training and higher-quality generated samples.

In this project, our aim is to use synthetic facial expressions to do the data
augmentation for the painful expression dataset in order to achieve better per-
formance for the APA. While there is no previous work on generating synthetic
pain expressions, the facial expression synthesis for inspiration can given
some inspiration.

Facial expression synthesis refers to generating realistic synthetic im-
ages of facial expressions using GANs. In this context, the goal is to generate
synthetic images of faces exhibiting different emotions or expressions, such as
happiness, sadness, anger, and surprise. Pain is not usually considered an emo-
tion as it is defined as a physical sensation rather than a mental or emotional
state. However, from the FACS perspective, they share similarities. For exam-
ple, sadness can be coded by AU1 (Inner Brow Raiser), AU4 (Brow Lowerer)
and AU15 (Lip Corner Depressor). While as we mentioned in Section .2.3, pain
is encoded by another set of corresponding AUs.

Numerous productive studies have been conducted in the area of Facial Ex-
pression Synthesis, yielding significant advancements in the field. Recently, the
utilization of GAN-based methods has emerged as a widely sought-after research
trend within the field of Facial Expression Synthesis:

• StarGAN
The StarGAN [26] was developed to address the challenge of multi-domain
image conversion. Prior to StarGAN, other GAN models such as Cycle-
GAN were limited to converting between only two domains. This meant
that to perform conversions across C domains, C × (C − 1) separate mod-
els would need to be trained. In contrast, StarGAN requires only a single
model to be trained, while still delivering exceptional results, see Fig.15.

(a) Cross-domain models (b) StarGAN

Figure 15: Comparison between cross-domain models and StarGAN [26]

The defining characteristic of StarGAN is its integration of domain control
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information, similar to the architecture of a CGAN, making this its main
contribution to the field, see Fig.16.

Figure 16: Overview architecture of StarGAN [26]

One of its key applications is the transformation of facial attributes, see
Fig.17.

Figure 17: Overview architecture of StarGAN [92]

It uses the training dataset of CelebFaces Attributes (CelebA) and Rad-
boud Faces Database (RaFD).

• GANimation
While StartGAN has been successful in generating facial expressions, it
is limited to the creation of discontinuous expressions. GANimation [93]
addresses this limitation by introducing a novel GAN conditioning scheme
that’s based on AU annotation. By describing the anatomical facial move-
ments that define human expressions, GANimation allows for controlling
the activation amplitude of each AU and combining several of them. In
addition, the model can be trained, using an unsupervised strategy with
only images annotated with activated AUs. The network is also robust
to changing background and illumination conditions using an attention
mechanism.

The GANimation network consists of two generators (G) and a discrim-
inator (D), combining the concepts of conditional GAN and CycleGAN.
It uses FACS to enable the generators to produce a sequence of smoothly
transitioning expressions. Besides, unlike traditional CycleGANs that have
two generators, the network employs a single generator, which generates
expressions based on the input expression codes. The cycle is achieved by
swapping the expression codes between the generator’s output and input.
See Fig.18 as a simplified version of the GANimation network.
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Figure 18: Simplified version of GANimation network [93]

The method consists of two modules, as shown in the figure. First, a
generator G(Iyr , Yg) is trained to produce a facial expression image that
closely resembles the target expression specified by the input image Iy and
the expression code Yg. The generator is executed twice: first to pro-
duce the generated image Iyg from the reference image Iyr (the mapping
relationship:Iyr → Iyg), and then to regenerate Iyr from Iyg . Second, a dis-
criminator D(Iyg) is trained using WGAN-GP to evaluate the authenticity
of the generated images.

In addition, another important contribution of the proposed model is the
attention mechanism in the generator, see Fig.19. This mechanism enables
the model to emphasize the areas that require deformation and to keep the
remaining facial features and the background as unchanged as possible.
By focusing on specific regions, the model can produce more accurate and
robust facial expressions.

Figure 19: The attention mechanism: Attention-based generator [93]

25



As for the loss function, it consists of four items:

– Image Adversarial Loss
Image adversarial loss is a GAN loss calculated using WGAN-GP. It
is included to obtain realistic synthesized images and to ensure that
the distribution of the generated images is similar to the distribution
of the training images.

– Attention Loss
Since the data does not contain a ground truth for the Attention
Mask, the generator trained to produce the mask can often reach a
saturation value of 1, rendering it ineffective. To address this issue
and ensure a smooth transition between generated images, the paper
introduces a Total Variation Regularization of the Attention Mask A.
The equation is as follows:

λTVEIyo∼Po

[
H,W∑
i,j

[
(Ai+1,j −Ai,j)

2 + (Ai,j+1 −Ai,j)
2]]+EIyo∼Po [∥A∥2]

(8)

– Conditional Expression Loss
The purpose of Conditional Expression Loss is to allow the generator
to learn to generate target expressions based on the expression code,
see the equation below.

EIy∼Po [∥Dy (G (Iyo | yf ))]− yf∥22
]
+ EIyo∼Po

[
∥Dy (Iyo)− yo∥22

]
(9)

– Identity Loss
Identity Loss is actually the cycle-consistency-loss in CycleGAN, which
is designed to guarantee that faces in both input and output images
belong to the same person.

These four components add up to the total loss function.

The resulting image is obtained by manipulating the input image Iyr , which
is indicated by the green square in Fig.20, using the parameter α.

Here, the parameter α controls the degree of activation of the target action
unit (AU) involved in the smile expression. CelebA is used for the training
database.

In summary, one of the most important aspects of GANimation is its ability
to adapt facial expressions based on action units (AU). By allowing the gener-
ator to learn how to manipulate specific AUs, the network can generate a wide
variety of facial expressions in a completely unsupervised manner. It provides a
more flexible and scalable framework for facial expression synthesis.
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Figure 20: The Examples of expression animation in a continuous domain [93]

After generating data using GANs, it is often necessary to evaluate the qual-
ity and diversity of the results. In this context, Inception Score (IS) [94] and
the Fréchet Inception Distance (FID) [95] are commonly employed as metrics to
assess and compare the efficacy of diverse GAN models. Below, we will provide
the description for each of these metrics respectively.

• Inception Score (IS)
The basic idea of the Inception Score (IS) is to use an image classifier to
evaluate the quality of generated images. Specifically, the classifier used
is the Inception Net-V3, which has been trained on the ImageNet dataset.
This metric is commonly used to measure both the quality and diversity of
the generated images from GAN networks. IS is calculated using a specific
formula, which is as follows.

IS(G) = exp
(
Ex∼pgDKL(p(y | x)∥p(y))

)
(10)

Here, DKL is the formula for KL-divergence which is a measure of the
difference between two probability distributions.

The objective of GANs is to generate clear and diverse images, hence
a higher IS score indicates better image quality. Additionally, since In-
ception Net-V3 is trained on a 1000-class classification task, the maximum
attainable IS score is limited by the number of classes, with IS(G) ≤ 1000.

However, the IS score has limitations. The IS score heavily relies on the
chosen classifier and is an indirect means of evaluating the quality of the
generated images. Furthermore, it does not account for the specific dis-
similarities between real and generated data. Since the Inception Score is
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based on ImageNet, any data that does not resemble ImageNet may be
judged as not real (fake) according to the IS metric.

• Fréchet Inception Distance (FID)
Unlike IS, Fréchet Inception Distance (FID) directly measures the distance
between the generated data and the real data at the feature level, without
the use of a classifier. As a result, it is often used to directly evaluate the
similarity between the generated image and the real image.

The top layer of a pre-trained neural network is known to extract high-
level information about an image and reflect the essence of the image to
some extent. FID takes advantage of this by using the 2048-dimensional
vector extracted before the fully connected layer of a pre-trained Inception
V3 as a feature of the image. It directly considers the distance between
the generated data and the real data at the feature level, without relying
on a classifier. The formula for calculating FID is as follows.

FID = ∥µr − µg∥2 + Tr
(
Σr + Σg − 2 (ΣrΣg)

1/2
)

(11)

The formula involves the trace of a matrix, which is the sum of its diagonal
elements, commonly known as "trace" in matrix theory. It also uses the
mean (µ) and the covariance (Σ) of the distribution, where r represents
the real image and g represents the generated image.

A smaller value of FID indicates that the distributions of the real and
generated images are closer to each other, which in means that the quality
and diversity of the generated images are better.

Compared with IS, FID exhibits greater robustness to noise. Furthermore,
unlike IS which assesses the authenticity of generated data by comparing it with
ImageNet data, FID evaluates by comparing the generated data directly with
the training data.

Overall, due to its comparative advantages, FID is currently a widely used
evaluation metric in the evaluation of GAN networks.
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3 Selected Dataset Overview and Analysis

In this project, the selected dataset is The Unbc-Mcmaster Shoulder Pain
Expression Archive Database (UNBC-McMaster dataset). It is one of
the most common databases to be used in the APA field. In this section, a full
description and analysis of the selected dataset will be provided.

3.1 Dataset selection: UNBC-McMaster dataset

UNBC-McMaster dataset is a collection of video sequences aimed at auto-
matically detecting facial pain in patients [62]. It was compiled by researchers
at McMaster University and the University of Northern British Columbia and
includes spontaneous facial expressions, Facial Action Coding System (FACS)
coded frames, frame-by-frame and sequence-level pain levels, and Active Ap-
pearance Model (AAM) landmarks [96]. To facilitate pain-related research and
supplement existing datasets, a portion of the data, collected from participants
undergoing range-of-motion tests while experiencing shoulder pain, was first
made available in March 2011.

The available dataset consisted of 25 individuals. During the data-collecting
phase, all participants were asked to perform movements in a laboratory room
in both active and passive conditions. The active test asks the participants to
stand and is instructed to move the limb as far as possible. In contrast, the
passive test was performed by a physical therapist who moved the limb until it
reached maximum range or was asked to stop by the participants.

In both active and passive tests, two digital cameras recorded the partici-
pants’ facial expressions. Then, in the assessment part, participants rated the
pain produced by each test verbally, where a card listing verbal pain descriptors
was given in advance. Furthermore, independent observers rated pain intensity
from the offline recorded videos at the sequence level. Notice, these observers
had considerable training in the identification of pain expression.

Fig.21 gives an example of the above process.

Figure 21: The sequences example from UNBC-McMaster dataset [62]

Then, the frame-by-frame level FACS codes and pain rating (PSPI) are im-
plemented.

First, the collected data were coded using the Frame-by-Frame Facial Action
Coding System (FACS). Here, the FACS coding only focused on movements
potentially related to pain, see Fig.22.
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Figure 22: An example with the corresponding AU and their intensity [53]

Then, we calculate the PSPI score based on the AU intensities. For instance,
the PSPI of Fig.21 is Pain = 4+Max(3, 4)+Max(2, 3)+1 = 4+4+3+1 = 12.

Briefly, the entire available UNBC-McMaster dataset has 200 sequences
from 25 different subjects. From the 200 sequences, a total of 48398 frames
have been FACS coded and PSPI scaled. Here the PSPI score was computed to
quantify pain intensity in 16 discrete levels (0-15).

Notice, not all the images of the UNBC-McMaster dataset can be shown.
We have been granted permission to use a select set of images (TV095, JL047,
IB109, DM039, AK064) for electronic media, with the condition that we ac-
knowledge the copyright holder(@jeffery Cohn). Therefore, all test cases pre-
sented in this thesis are from this subset of licences.
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3.2 Dataset analysis

Next, we give a detailed analysis of the selected dataset. The specific analysis
is as follows:

• Imbalanced label distribution
The UNBC-McMaster database has an uneven distribution of PSPI scores
between the different intensity levels, see table.4.

PSPI 0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15

% total 82.71 10.87 4.57 1.06 0.27 0.20 0.26 0.05 0.01

Table 4: Data distribution of UNBC-McMaster dataset

The percentage of each pain intensity relative to the total number of frames
is given there (N = 48398).

As we can see, 82.71% of frames had a PSPI score of 0 and 17.02% of
frames had a PSPI score ≥ 1.

• Insufficient volume of data
There is an insufficient amount of data for most pain levels in the database.
For example, there are only 895 images for pain intensity greater than
5. Besides, the UNBC-McMaster database contains data on only 25
people. Both factors make it far from enough to train machine learning
models that can generalize to the unseen subject.

• Range of head pose
Even though faces are nearly frontal, out-of-plane head rotation is present
in several frames, see Fig.23.

Figure 23: An example of head movement in the database [43]

The video sequences have various durations, with sequences lasting from
90 to 700 frames. As a result, the faces in the images are not aligned and
no semantic correspondence is established across subjects and frames.

Overall, the UNBC-McMaster database presents two major challenges in
terms of being imbalanced and insufficient for a multi-class classification task.
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This makes it challenging to train machine learning models that can generalize
well. Furthermore, the range of head pose may cause misalignment of facial
expressions and affect the accuracy of feature extraction and analysis [97].
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4 Methodology

In this section, we provide a detailed methodology of GANimation as a tool for
augmenting pain databases, see Fig .24 as the overall pipeline.

Figure 24: The Overall Pipeline

We first give a detailed implementation of GANimation, which enables us to
control the magnitude of activation of each AU. This will give us the ability to
generate facial expressions effectively. Then, a novel mechanism is proposed for
generating sufficiently diverse pain expressions through varied AU combinations.
Based on these two methods, a comprehensive solution for generating a balanced
and sufficiently diverse dataset is proposed. Finally, we give the evaluation
procedure for the augmented datasets, which will assess the effectiveness of our
augmentation strategy.

4.1 Manipulating AU through GANimation

After a comprehensive investigation and comparative analysis of various GAN
networks in section 2.4, we choose GANimation [93] as the foundational archi-
tecture for our project. This decision was based on the unique features of GAN-
imation, the ability to precisely control the activation amplitude of each action
unit (AU) and the ability to combine multiple AUs. In this section, we give the
detailed implementation process, result analysis and finetuning improvements.

4.1.1 Training Phase

We use a reimplementation of GANimation [98] based on Pytorch. Compared
with the original GANimation, its codes are cleaner and well structured as well
as providing a more powerful test function. As for the training part, the specific
process is as follows:

• Data Pre-processing
We use the dataset called EmotionNet [99] which contains more than 400k
in-the-wild face images to train the GANimation network. See Fig.25 is
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the example of the query obtained when retrieving all images identified as
happy and fearful by the algorithm.

Figure 25: The Examples from EmotionNet dataset [99]

The dataset was collected using several web search engines to specifically
select images with faces as features and associated with sentiment keywords
in WordNet [100].

For every image in the dataset, we first extract the face bounding box and
crop the face from the images. Here we use face_recognition, a simple
face recognition library to recognise and manipulate faces from Python or
the command line [101]. The final image output size is 128 ∗ 128.

(a) (b) (c)

Figure 26: Image [102] pre-processing example: (a) the original image (b) Face bounding box
is extracted (c) Face is cropped from the images and resized to 128 ∗ 128.

Fig. 26 illustrates an example of face detection by face_recognition, with
the detected face location’s pixel coordinates as follows: Top: 118, Left:
118, Bottom: 304, Right: 304.

• Obtaining AU Annotations
As we mentioned in the section 2.3, the creation of annotated databases
based on the FACS system, including Action Units (AUs) and their re-
spective intensities, requires a lot of expert coders and their time [103].
This has led to a notable lacking of large-scale, annotated databases and
video sequences of facial expressions.
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To address this challenge, here, we use OpenFace [104] to extract a vector
of AU intensities from available facial expression datasets. The Action
Uints used in this project is: [AU01, AU02, AU04, AU05, AU06,
AU07, AU09, AU10, AU12, AU14, AU15, AU17, AU20, AU23,
AU25, AU26, AU45].

AU intensity assigned by OpenFace is a number between 0 and 5 with two
decimal places. Here, we divide all values by 5 and normalize them to
within the interval 0-1.

• Training Setting
We trained the model with 410k images from the EmotionNet dataset to
reduce training time. Then, we choose Adam [105] with a learning rate
of 0.0001, β1 = 0.5, β2 = 0.999 and batch size 10. The model is trained
for 30 epochs with a linear decay rate of 0 over the last 10 epochs. For every
5 optimization steps, the critic network we perform a single optimization
step of the generator.

4.1.2 Testing Phase and Result Analysis

After completing the training phase of the model, we do the testing part.
For this, we first selected images from the UNBC-McMaster dataset with

a pain intensity score of 0 as the input test images. Since every subject in the
dataset contains an extensive subset of data marked with zero pain intensity, we
gave priority to the frontal images with eyes open as input data. Then, we follow
the same image pre-processing procedures as in the training phase. Besides, to
improve the clarity of the generation result, we perform the alignment by using
the alignment function in Openface to position the head pose directly in front.
See Fig.27 as an example Input image for the following experiments.

(a) Original image (b) (c)

Figure 27: Image Pre-processing in the testing phase: (a) Original image selected from the
dataset (b) The same pre-processing procedure as the training phase (c) Final input test
image.

We carried out the experiment for all pain-related AUs, initiating at an in-
tensity of 0.2. The intensity was subsequently increased incrementally by 0.2 in
each step. Fig.28 is the generation result. As we can see, the generated results
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are very noisy, especially when the intensity increases.

Figure 28: Generation result obtained from GANimation

We attribute these to two main factors through detailed analysis:

• Domain Variations:
The GANimation network was trained on the EmotionNet dataset and
then tested with images from the UNBC-McMaster dataset. Unfortu-
nately, the results have proven to be somewhat noisy. We attribute this
primarily to the different environments of the two datasets.

The EmotionNet dataset contains in-the-wild face images. Here, in-the-
wild means images downloaded from the Internet such as social media. In
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other words, it was captured in a variety of uncontrolled settings with vary-
ing light conditions and camera quality. In contrast, the UNBC-McMaster
dataset was collected under more controlled laboratory conditions. Such
differences in the data collection environment (external factors) may in-
troduce unpredictable variables, such as differences in lighting and image
quality, which can affect the performance of our models.

Overall, we believe it is these domain variations that affect the performance
of our model when transforming from one dataset to another.

• Residual features after pre-processing:
Although we pre-process the data in both training and testing phases, we
still found that certain elements such as hair were still present. This can
affect the training results. For example, the Brow Lowerer, represented
by AU4, may be obscured by hair. We think this is another reason which
would affect the quality of the generated images.

4.1.3 Finetuning

Based on the above-mentioned analysis results, we propose two strategies for
fine-tuning the GANimation network in order to improve the generation results.

• Within domain generation:
To reduce the effects of Domain Variations, we propose fine-tuning GAN-
imation using the UNBC-McMaster dataset, thereby solving the
issues we previously encountered from the EmotionNet.

By fine-tuning the model in this way, we can create coherence between
the training and testing environments. Given that the UNBC dataset
has uniform settings in terms of resolution, camera, view angles, and age
groups, it can provide a more consistent benchmark for testing the model.
In other words, this solution essentially provides so-called ’within domain
generation’, in which both the training and testing data come from the
same source or domain. We believe by reducing these domain variations
between the domains of training and testing sets, we will get less noisy
results, leading to more reliable and precise outcomes.

• 3D registration:
We perform 3D registration to solve the residual features of both the
training and testing phases, aiming to the reduction of residual features.

As we analyze in 3.2, out-of-plane head rotation is present in several
frames. Preliminary pre-processing such as 2D alignment using Open-
Face proved insufficient, as demonstrated in Fig.29b. Therefore, we apply
3D registration to every image in the UNBC-McMaster dataset. Our ap-
proach is informed by the 3D registration method presented by Giacomo
et al. [106]. In specific, it uses PRNet [107] which gets a 2D face image as
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input, performs 3D registration without requiring person-specific training,
and outputs a dense 3D mesh of the face. The result is shown in Fig.29c.

(a) (b) (c)

Figure 29: Out-of-plane head rotation and alignment: (a) Example of out-of-plane head rota-
tion (b) Alignment using Openface. (c) 3D registration.

Then, we begin to finetune the GANimation based on the two strategies.
The detailed process is as follows:

1. Step 1: Dataset spliting
We first split the training dataset and the test dataset. The whole UNBC-
McMaster dataset has a total of 25 subjects, and we choose 20 subjects
for the training set and reserve the remaining 5 for the test set.

2. Step 2: 3D registration
We perform 3D registration of the data in the training set. Notice, the out
result also shows that five images (see Fig.30 as a shown example), failed
to be extracted and we removed them from the training set.

3. Step 3: Obtaining AUs labels
We used OpenFace to extract AU from the 3D-registered images in the
training set. The extracted results are saved in the CSV files with the
same name as the corresponding image.

(a) (b) (c)

Figure 30: Part of failed examples

After completing the above pre-processing steps, we finetune the GANima-
tion that is pre-trained on EmotionNet with UNBC-McMaster dataset. Here,
we keep the training setting the same as those used for training EmotionNet,
see 4.1.1.
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4.1.4 Generated Result after Finetuning

In the testing part of the fine-tuned GANimation, we carried out the same
experiment setting and input image as in section 4.1.2.

A visual comparison of results, illustrated in Fig.31, indicates that images
have a higher quality compared to those produced without fine-tuning.

(a) Without finetuning (b) With finetuning

Figure 31: Comparison of generated results (2D aligned).

More generation results of the permitted-shown cases can be found in ap-
pendix A. We think these supplemental examples will provide a wider perspec-
tive. Besides, a comprehensive analysis of the comparison between the gener-
ated images with fine-tuning and without fine-tuning GANimation network is
provided in Section 5.1.

In conclusion, the fine-tuned GANimation model can be used as an effective
tool for generating painful expressions in our project.
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4.2 AU Combinations for Pain Expression Generation

So far, we can already control the magnitude of activation of each AU and
combine several of them through GANimation. Our goal now is to manipulate
these AUs in order to generate pain expressions of various intensities. The overall
solution for pain expression generation is:

By manipulating the Action Units (AU) through GANimation to
generate the images, we calculated the different pain levels of the

generated images according to the pain formula 1.

In this part, we will first describe the components of the pain formulation.
We will then analyse and identify specific AUs that contribute to noisy out-
put. Lastly, a scoring mechanism is proposed which can help us select the most
effective combination of AUs to generate clear, realistic expressions of pain.

4.2.1 Components of Pain Formula

As it shows in the pain formula 1, only the action units [AU4, AU6, AU7, AU9,
AU10, AU43] contribute to the pain level calculation. In our GANimation im-
plementation, we use OpenFace to generate [AU4, AU6, AU7, AU9, AU10].
However, OpenFace does not generate AU43. Since it is not possible for us to
introduce a new label like AU43 into the GANimation system. Therefore, we
propose an alternative strategy to approximate the AU43, which was in-
cluded in OpenFace-generated labels, to AU45.

In specific, a review of the relevant literature shows that AU43 denotes Eyes
Closed, which is scientifically defined as ‘the relaxation of levator palpebrae
superiors. AU45 refers to blinking, defined as relaxation of levator palpebrae su-
perioris; contraction of orbicularis oculi (pars palpebralis). In the pain formula,
AU43 can be either 0 (eyes closed) or 1 (eyes opened). Based on these defini-
tions, we make the following assumption: when a blink (AU45) reaches a
certain intensity, it can be considered as an eye closed (AU43).

We then conduct the following experiments to validate this assumption and
find the threshold. Here, we keep all other AU equal to 0 and only change
the intensity of AU43. Fig.32 presents images generated by GANimation with
different AU45 values.

As we can see, when AU45 = 0.4, the eye is observed to be fully closed.
Therefore, We have come to the following conclusion:

AU43 =

{
0 AU45 < 0.4

1 AU45 ⩾ 0.4
(12)
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Figure 32: The generated images if different AU45 values

With the components of the pain formula defined, we can now generate
different levels of painful expressions by manipulating various action units.

To start, We define a Pre-determined List. In every pre-determined list,
we assign varying values to pain-related Action Units ([AU4, AU6, AU7, AU9,
AU10, AU43]), while setting all other AUs not associated with pain to 0. Here,
since the AUs are initially normalised in GANimation from 0-5 to 0-1, we present
the normalised values in this context. Then we calculate the corresponding PSPI
level. See table 5, each row is examples of predetermined lists.

AU4 AU6 AU7 AU9 AU10 AU45 PSPI

0 0 0 0.2 0 0 1
0.2 0 0 0 0.4 0 3
0 0.6 0 0 0 0.4 4

0.6 0 0.8 0.8 0 0.4 12

Table 5: Examples of predetermined lists

By giving the input image and the Pre-determined List, GANimation can
generate pain expression. Fig.33 is the generation results derived from the Pre-
determined List, corresponding to each row in table 5.
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Figure 33: Generation results according to table 5

4.2.2 Generated Result Analysis

By conducting a series of experiments aimed at generating various levels of
pain expressions using different pre-determined lists, we made several notable
observations.

• Observation 1:
The noise is more noticeable in AU9, see Fig.34 below.

Figure 34: The generated images with different AU9 values

• Observation 2:
The noise level increases as the AU intensity value increases. See Fig.35
as examples.

• Observation 3:
The overlapping effect of multiple action units (AU) occurs when multiple
action units (AU) exhibit intensity at the same time, which may have some
negative effects on the generated results.

As we can see from Fig.36, we recognized that Action Units 4 (AU4), 6
(AU6), 7 (AU7), and 45 (AU45) are all associated with the upper facial
region.
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(a) AU4 (b) AU6

Figure 35: The generated images with AU values from 0.1 to 1.0

(a) AU4 (b) AU6 (c) AU7

(d) AU9 (e) AU10 (f) AU45

Figure 36: The FACS description of pain-related AU. (a) Brow Lowerer (b)Cheek
Raiser (c)Lid Tightener (d)Nose Wrinkler (e)Upper Lip Raiser (f)Eyes Closed

Having each of these four AUs simultaneously exhibiting intensity could
potentially result in overlapping effects, which may distort the accuracy of
the results or render them more complex to interpret. Fig.37 clearly shows
the generated result of multiple AUs.

Each row corresponds to a different AU intensity, while each column rep-
resents the set of AUs represented by the corresponding number.

In conclusion, our observations demonstrate that different pre-determined
lists indeed generate pain expressions of varying quality.

4.2.3 Scoring Mechanism

In this part, we introduce a scoring mechanism to find the optimal Pre-determined
Lists.

First, we defined a Pre-determined Matrix M which consists of all possi-
ble Pre-determined Lists li. Specifically, we consider values ranging from 0 to
5 for each of the following AUs: [AU04, AU06, AU07, AU09, AU10] and either
0 or 1 for [AU45]. The corresponding pain intensity PI was calculated based on
the pain formula. Then, we normalize [AU04, AU06, AU07, AU09, AU10] to a
0-1 range and set the value of AU45 according to formula 12.
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Figure 37: The generated images of multiple AUs

PSPI 0 1 2 3 4 5 6 7 8
Types 1 8 33 96 225 456 806 1240 1686
PSPI 9 10 11 12 13 14 15 16
Types 2056 2246 2136 1785 1344 873 440 121

Table 6: Statistical data of Pre-determined Matrix

Table 6 gives the count of all possible combinations with the same pain levels
in the Pre-determined Matrix.

Then, the scoring mechanism based on the observations for every li in M is
as follows:

• Initialization.
For each Pre-determined List in the Pre-determined Matrix, we set the
initial score S = {SAUn|n = 4, 6, 7, 9, 10, 45} of each Action Unit (AU04,
AU06, AU07, AU09, AU10, AU45) to 10. Here, we set V = {vAUn|n =
4, 6, 7, 9, 10, 45} to represent the value of each AU.

• Adjustments based on Observation 1
If the value of AU09 is greater than 0.3, the initial score of AU09 is:
SAU9 = SAU9 − 2× 10× vAU9

• Adjustments based on Observation 2
If the value of any AU among AU04, AU06, AU07, or AU10 is greater than
0.8, the initial score for that particular AU is: SAUn = SAUn − 10× vAUn .
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• Adjustments based on Observation 3
The scores Score for each of AU04, AU06, AU07, AU09, AU10, and
AU45 are summed to obtain a total score, Score = Sum{SAUn|n =
4, 6, 7, 9, 10, 45}. Then, we count the number n of AUs among AU04,
AU06, AU07, AU09, and AU45 which is bigger than 0.8. The total score
Score = Score− n ∗ 2.

• Shuffling the images
For rows with the same pain level PI , the rows are sorted based on the
total score Score, from highest to lowest. In cases where the total score is
identical, we Shuffled the rows.

Fig.38 gives examples of pain level 10. We randomly choose the Pre-determined
List with different score values.

Figure 38: The generated images with a different score.

From a visual perspective, it can be seen that as the score decreases, there
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are simultaneously decreases in the quality of the generated image. We select
scores above 35 as the threshold for viable Pre-determined Lists. Table 7 is
the calculated number of Pre-determined Lists where the score (S) exceeds 35
within each pain level.

Pain Level 1 2 3 4 5 6 7 8
Number 8 33 96 225 454 796 1211 1625
Pain Level 9 10 11 12 13 14 15 16
Number 1896 1887 1634 1212 693 271 58 0

Table 7: Selected Pre-determined Lists

In conclusion, we consider the pain expressions generated from these pre-
determined lists to meet the required quality standards for our study. There-
fore, the outputs from these lists were chosen for the next phase of database
generation.
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4.3 Painful Dataset Augmentation

Having presented the strategy for generating diverse pain expressions, we first
give the detailed implementation of generate a sufficient and balanced painful
dataset by using the fine-tuned GANimation network.

In this project, we aim to augment the UNBC-McMaster dataset. Corre-
spondingly, we trained our fine-tuned GANimation network on the same dataset
to achieve the within-domain generation. In this case, we need to make sure that
the fine-tuned GANimation network only generated images of the five individ-
uals included in the test set in order to prevent any bias. To perform the data
augmentation on the entire dataset, images from all 25 individuals need to be
generated. Therefore, we fine-tune the GANimation five times.

For each run, we randomly selected five individuals for the test set, and the
remaining 20 were used as the training set. Table 8 gives 5 different test sets
and here we assigned numerical identifiers from 1 to 25 to each individual. The
GANimation network was then fine-tuned using the different versions of training
sets. As a result, we obtain five versions of the fine-tuned network.

Version 1 2 4 12 16 24
Version 2 3 5 8 9 20
Version 3 7 10 18 21 23
Version 4 1 6 13 19 22
Version 5 11 14 15 17 25

Table 8: Test data of each version of fine-tuned network

To start with, we extract the data for each person at a pain level of 0, as
defined by the database labels. Then, with the above-mentioned five versions
fine-tuned GANimation network, we can generate pain expression for every in-
dividual based on the scoring mechanism.

With the scoring mechanism, we can have a sufficiently diverse dataset. How-
ever, the project also requires for balanced across various pain levels. As such,
we choose to generate the same number of images n per individual, for each pain
level, ensuring a uniform distribution of data across the entire pain dataset. If
the number of Pre-determined lists for each pain level smaller than n, we just
randomly selected 100 Pre-determined lists for each pain level to generate the
corresponding images.Otherwise, we can choose more than one image as input,
and use all available Pre-determined lists to generate the images. After that we
randomly select n images for each pain level. Through this method, we can suc-
cessfully create a sufficiently diverse and balanced dataset, effectively addressing
the previously existing problems.

Notice, as we mentioned in section 4.1.2, the residual features remaining af-
ter pre-processing may also have some negative impact the test set. To futher
discussed, we have two types of input images format in this context. One type
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is the images with 2D alignment, and the other comprises images with 3D regis-
tration. A detailed discussion on the performance of these two types of images
with the GANimation network will be provided in the section 5.2.
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4.4 Painful Dataset Evaluation

Having completed the data augmentation process, this part gives a comprehen-
sive evaluation strategy for the augmented dataset. This evaluation strategy is
significant as it confirms the robustness, applicability, and potential value of the
generated data in the APA field.

Fig.39 provides the overall evaluation pipeline.

Figure 39: The overall evaluation pipeline

It can be divided into three key stages:

• Image Quality Assessment:
As the first step in the evaluation process, our goal is to measure the qual-
ity of the images generated during the data augmentation process. This
evaluation is to ensure that the images are of sufficiently high quality. Our
approach combines both qualitative and quantitative research methods.

In the qualitative evaluation, we use visual assessments which provide us
with an immediate, intuitive grasp of the quality of generated images. Fac-
tors like clarity and realism can be considered here. Then, to complement
and balance the subjective nature of the qualitative evaluation (visual as-
sessment), we introduce a quantitative metric, namely the Cumulative
Probability of Blur Detection (CPBD). It is a no-reference image
blur metric, which is derived from research into human perception of blur
at different contrast values. It is an image quality metric that matches the
characteristics of human vision. Larger values on the CPBD scale reflect
clearer detail and less blur, allowing us to quantify the quality of sharp-
ening in filtered images. By using CPBD, we ensure a comprehensive,
multifaceted evaluation of the quality of generated images.

• GAN-based Network Measurement:
After the image quality assessment, we can focus on the evaluation of the
GAN network itself. Here, we use the Fréchet Inception Distance
(FID).
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As we mentioned in section 2.4, it is a popular metric used in the evalu-
ation of generative models, particularly Generative Adversarial Networks
(GANs). It compares the distribution of generated images with the dis-
tribution of a set of real images (Ground Truth) [95]. A low FID score
means that the distribution of the generated image is more similar to the
real image, indicating that the generated image is very similar to the real
image. An FID score of zero means that the two distributions are the same,
though this is rarely achieved in practice due to the inherent complexity
and variability of image data.

In sum, the FID score can provide a measure of the similarity between the
distribution of the generated images and the distribution of the original
dataset, offering a precise insight into the ability of the GAN network to
reproduce the original data feature.

• Performance Evaluation of the Trained Classifier:
The final stage of our evaluation process assesses the potential of the en-
hanced dataset for practical applications. For this purpose, we trained
a simple classifier for the APA task using an augmented dataset. We
then analyze the performance of this classifier to understand how the
augmented dataset potentially contributes to improving existing APA ap-
proaches. This allows us to evaluate whether our data augmentation work
produces datasets that are effective in improving model performance and
generalisation in real-world environments.

In sum, our evaluation strategy is designed not only to validate the quality
and effectiveness of the generated dataset but also to highlight areas of potential
improvement and further research of current APA approaches.
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5 Experiment Results

This section provides the corresponding experiment results following the instruc-
tion of Section 4.4.

5.1 Image Quality Assessment

For the first experiment, a critical goal was to assess the quality of image gener-
ation and then to validate the generation quality of the fine-tuned GANimation
network.

We start by using a sample of test images with 2D alignment. Specifically,
we randomly select one individual from each of the five different versions of the
fine-tuned GANimation network as the test subject. For each of these subjects,
we generate 100 pain images corresponding to each pain level (ranging from 1-
15) by using the scoring mechanism for each pain level(1-15). This process will
be repeated twice: once with the GANimation network without finetuning and
once with the finetuning GANimation network.

In section 4.1.4, we have already presented a qualitative measure of image
quality through a comparative visual inspection. It shows that the images gen-
erated by the fine-tuned network appear sharper and more realistic than those
generated before the fine-tuned. Then, we use CPBD to provide a quantita-
tive measure of image quality. In specific, We calculate the CPBD values for
each generated image for each test subject and then compute the average. This
effectively captures the average generated image quality for each object.

The table 9 summarises our experimental results, providing a clear compar-
ison between the GANimation network with and without finetuning.

Test subjects 16 8 18 33 22
Without fine-tuning 0.273 0.386 0.325 0.230 0.340

With fine-tuning 0.318 0.419 0.347 0.256 0.378

Table 9: The average CPBD value

Across all test subjects, the images generated by the finetuned network con-
sistently exhibit higher average CPBD values than those generated without fine-
tuning. This increase in CPBD values can be directly translated to an enhance-
ment in image quality: higher CPBD values indicate clearer detail and less blur
in the produced images. This observation is also consistent with our qualitative
(visual) assessment.

In conclusion, our findings provide compelling evidence that fine-tuning the
GANimation network significantly enhances the quality of the generated images.
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5.2 GAN-based Network Measurement

The second part of our experiment is dedicated to the implementation of the
GAN-based Network Measurement, which is a necessary step to assess the qual-
ity and diversity of the generated datasets.

FID is a Full Reference (FR) metric, which measures the similarity between
the real dataset and generated dataset. Therefore, for each individual, we define
two groups: Reference group Fr, representing the ground truth, and Generated
group Fg.

• Fr: This group includes all images of pain level mi (except for pain level
0) from the original dataset.

• Fg: For each level mi, generated 100 painful images based on the scoring
mechanism .

In this experiment, we first randomly select a fine-tuned version of the GAN-
imation model for testing purposes. Then, for each test subject, we choose the
same image after 2D alignment and 3D registration, respectively. Here, in order
to control the variables, all images in the FR group are processed in the form
corresponding to their input (either 2D or 3D).

The table presented below provides FID values for different types of input.

Test subjects 2D aligned 3D aligned
2 67.676 40.461
4 49.099 42.499
12 72.905 59.733
16 66.376 65.797
24 72.905 41.308

Table 10: The FID value of finetuned GANimation version 1

By checking Table 10, we observe that for a given GAN network, the dis-
tribution of the generated data of the 3D aligned input image is more closely
aligned with the original distribution compared to the 2D aligned ones. This
result could indicate that the use of 3D registration could produce a more real-
istic dataset which can better reflect the distribution of images in the original
dataset. Thus, we can say 3D registration is more effective than 2D alignment
in generating a more authentic distribution of images.

52



5.3 Performance Evaluation of the Trained Classifier

For the final experiment, we focus on the performance analysis of the trained
classifier. This analysis aims to provide an understanding of how our generated
dataset can contribute to enhancing the existing APA approaches.

In this task, we pool PSPI scores into a simplified 6-point scale instead of
16 levels of classification. The scale ranges from 0 (indicating no pain) to 5
(signifying strong pain), making the task more practical and manageable.

In terms of data partitioning for training and testing purposes, we adopt the
widely-used 80:20 ratio. This ratio corresponds to using 80% of the data for
training the model and the remaining 20% for testing its performance. Given
a total of 25 individuals in the dataset, this division results in 20 individuals’
data used for training and 5 for testing. The selection of these 5 testing datasets
is done randomly to ensure unbiased results. Table 11 and table 12 provide a
detailed look at the actual distribution of the training and testing sets separately.

The Class Label PSPI Score Number of Images
0 No Pain 0 33112
1 Mild Pain 1-3 5470
2 Moderate Pain 4-6 854
3 Severe Pain 7-9 87
4 Very severe pain 10-12 148
5 Strong pain >13 18

Table 11: The distribution of the training set in the original dataset

The Class Label PSPI Score Number of Images
0 No Pain 0 6862
1 Mild Pain 1-3 1200
2 Moderate Pain 4-6 459
3 Severe Pain 7-9 77
4 Very severe pain 10-12 43
5 Strong pain >13 10

Table 12: The distribution of the testing set in the original dataset

In this experiment, the generated dataset consists of 100 images for each
individual, per pain level.

As for the classification model, we choose the network from the Off-the-
Shelf CNN. In particular, we use ConvNeXtSmall [108], a model from Keras
Applications with pre-trained weights [109]. This decision is motivated by the
robust performance demonstrated by these architectures across various vision
tasks, as evidenced by the results in the ImageNet Large Scale Visual Recog-
nition Challenge [110]. Such CNNs, trained on millions of images for object
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category classification, are remarkably suitable for direct pain assessment ap-
plications. Specifically, we used the pre-trained ConvNeXtSmall model as the
base and added custom layers: a Global Average Pooling2D layer to transform
the feature maps into individual vectors, a dense layer with 1024 neurons for
deeper abstraction, and a final dense layer with 6 neurons for 6-category (0-5
pain levels) classification.

As for the training setting, we used the Adam optimizer with a 0.0001 learn-
ing rate, a categorical cross-entropy loss function for compilation, and tracked
accuracy as a metric during training and validation. The model was trained for
12 epochs using training data with a batch size of 128.

We defined two groups for comparison: the control group used the original
3D-registered dataset (original dataset), and the experiment group used the
generated dataset for training (generated dataset). Both groups used the same
split for datasets. Notice, here the test set of the experiment group is the same
as the control group instead of the generated date.

The plots of model accuracy and loss for both training sessions are as follows:

(a) Accuracy of the original dataset (b) Loss of the original dataset

(c) Accuracy of the generated dataset (d) Loss of the generated dataset

Figure 40: Model accuracy and loss during training
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The results for both the generated dataset and original dataset are presented
in the table below.

Class Precision Recall F1 score Support
0 0.79 1 0.88 6867
1 0 0 0 1202
2 0 0 0 459
3 0 0 0 77
4 0 0 0 43
5 0 0 0 10

Accuracy 0.79 8658
Macro avg 0.13 0.17 0.15 8658

Weighted avg 0.63 0.79 0.7 8658

Table 13: The result of the original dataset

Class Precision Recall F1 score Support
0 0.79 0.87 0.83 6867
1 0.11 0.1 0.11 1202
2 0 0 0 459
3 0 0 0 77
4 0 0 0 43
5 0 0 0 10

Accuracy 0.7 8658
Macro avg 0.15 0.16 0.16 8658

Weighted avg 0.64 0.7 0.67 8658

Table 14: The result of the generated dataset

A comparison of these results reveals that the accuracy for class 0 is roughly
the same between the two groups. However, for class 1, the experimental group
outperformed the original dataset in terms of both accuracy and recall, suggest-
ing an enhanced ability to identify class 1 labels.

Specifically, despite the original dataset showing a higher overall accuracy
(0.79) compared to the generated dataset (0.70), this could potentially be mis-
leading. Since the original dataset appears to classify most instances into class
0, this may lead to high accuracy but weak performance for class 1. In contrast,
the generated dataset attempted to recognize instances from class 1 and possi-
bly others, which might have resulted in a slightly reduced overall accuracy but
improved performance on other metrics. Furthermore, while the original dataset
achieved a recall of 1 for class 0, the generated dataset provided a better balance
between accuracy and recall, producing a higher F1 score (0.83 instead of 0.88).
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In summary, the generated dataset showed better performance in identifying
class 1 instances and maintained a balanced performance in class 0. However,
both groups showed room for improvement in recognising the rest of the classes.
A more comprehensive analysis is provided in the section 6.2.
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6 Discussion and Conclusion

In this section, we re-examine the research questions, summarise the findings
and describe the experimental results in detail. We then discuss the analysis of
potential enhancement pathways based on the experimental results.

6.1 Review of Research Questions

In our project, the primary research question is: How can the application of
GANs be utilized to generate synthetic but realistic facial pain expres-
sions, with the goal of effectively augmenting the existing dataset?

We explore this research question by conducting three distinct but related
sub-research questions, which helped design and evaluate the effectiveness of the
dataset augmentation scheme and assess its potential to bolster the performance
of existing APA approaches.

Our first research question focuses on the quality of GAN-based generated
images: Can the dataset augmentation scheme generate realistic syn-
thetic painful expressions? This question is essential since the ability to
generate such images of painful expressions is the foundation of its practical
application.

In the initial implementation of GANimation based on the ’in-the-wild’ Emo-
tionNet dataset, we get unsatisfactory results. Further investigation shows it is
caused by two main factors: Domain Variations and Residual features post-
processing. To overcome these two challenges and to produce more realistic
and higher quality images of painful expressions, we proposed two strategies: 1)
fine-tuning the GANimation network using the UNBC-McMaster dataset, and
2) processing the images from the UNBC database with 3D registration, in order
to realize the ’within-domain generation’.

Compared the performance of those two versions of GANimation - one with
fine-tuning and the other without. Both qualitative visual assessments and
quantitative CPBD measurements validate the quality of the generated images.
The experimental results corroborate the effectiveness of the proposed solution in
generating satisfactory-quality images, thereby validating that the GAN-based
augmentation scheme can generate realistic synthetic painful expressions.

The second research question is How do 2D and 3D face registration be-
fore pain expression generation impact the performance of the model?
Compared with the first research questions which focused on the image perspec-
tive, this one is more concerned with the dataset perspective. Essentially, as a
dataset augmentation method, we need to produce a dataset of synthetic images
that are not only high quality but also sufficiently diverse.

To achieve this, we designed an innovative scoring mechanism to generate
a balanced and sufficiently diverse dataset with high-quality images. Besides,
we also make an assumption that the 3D registration before pain expression
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generation can have a positive impact on the performance of the GANimation
model. In the experiment part, we employed the Fréchet Inception Distance
(FID) to measure the similarity between the distribution of the generated and
original datasets. Our experiments confirm this hypothesis by demonstrating
that the images generated after 3D alignment not only maintain a high quality
and diversity but also show a similar distribution to the original database, thus
validating our scoring mechanism.

The last research question highlights the application part: How does the
potential impact of the synthetic pain expression dataset on the per-
formance of existing APA approaches? Through this question, we aim to
show the application of the generated dataset in real-world scenarios, particu-
larly in training a machine learning classifier for the APA field.

To explore this, we trained a convolutional neural network (CNN) classifier
using the synthetic dataset. In the experimental section, we evaluate this trained
classifier using Precision, Recall and F1 scores. The results show an improvement
in the ability to identify certain pain categories compared to the original model,
especially in under-represented categories. Although the performance of the
CNN classifier did not reach the level we had expected, it provides a promising
baseline of the potential for improving the learning-based APA approach.
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6.2 Limitations

Our research has produced promising results, but the performance of the trained
classifier did not reach what we initially expected. In this section, we identify
several factors that may have contributed to this variation.

6.2.1 Label Discrepancy

We think one of the primary factors that could account for this variation is
the mismatch between manual labels provided in the original dataset and the
automated annotations generated by OpenFace.

As we mentioned in 2.3, the creation of annotated databases based on the
Facial Action Coding System (FACS) requires significant time and effort. This
leads to a lack of large databases of facial expressions with FACS annotations.
To address this problem, we use the annotation provided by the OpenFace in the
training of the GANimation network, which provides a fully automated solution
for AU annotations. However, this approach posed specific challenges in the
following part of the research. See Fig 41 as an example of these discrepancy.

Figure 41: Example image

In the manual annotation, Table 15 gives the AUs intensities. And a pain
level of 10 (PSPI score) is calculated based on them. However, the AU intensities
generated by OpenFace are quite apparent.

AU04 AU06 AU07 AU09 AU10 AU43 Level
Manual annotation 5 4 0 0 0 1 10

OpenFace annotation 2 1 1 0 1 1 5

Table 15: The annotation AU labels

This discrepancy causes a dilemma of ’ground truth’. Since our aim is to
generate painful facial expressions by manipulating various AU intensities, which
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means that the annotations (AU intensities and pain levels) are based on Open-
Face. However, manual annotations are typically considered the most reliable
ground truth because they were carefully annotated by experts. Therefore, in
the testing part of the classifier, we use the manual label as the ground truth.
Ideally, both manually and automatically generated AU labels should align.
However, we found a considerable discrepancy between them. This discrepancy
resulted in a considerably different in the generated training data distribution
compared to the actual distribution observed during the testing phase.

In short, the classifier is trained using OpenFace labels as the ground truth,
but these labels do not accurately reflect the actual ground truth, i.e., manual
labels, during the testing phase. This can lead to discrepancies between the
training and testing scenarios, which in turn can have a negative impact on the
performance of the classifier.

6.2.2 Computational Limitations

Another potential limitation lies in the training duration of the classifier. In
specific, our classifier was trained for only 12 epochs, considerably fewer than
many similar studies. For instance, E.Morabit et al. [111] use 200 epochs to train
an Off-the-Shell CNN classifier. The reason for our shorter training duration is
our research was conducted on Google Colab, which has certain computational
limitations. We think these kinds of limitations may limit the training of the
classifier, thereby influencing the quality of results.

6.2.3 Test Dataset Volume

Our test dataset may not be sufficient to accurately assess the effectiveness of
the classifier.

Even though we performed data augmentation on the training dataset, the
test dataset we use in the classifier was directly from the original dataset without
any augmentation. In other words, the test dataset still suffers from the issues
of insufficient data volume and imbalanced label problems. This implies that
our test dataset might not have been sufficiently comprehensive or diverse to
provide an accurate evaluation of the classifier’s effectiveness.
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6.3 Future work

Looking forward, we believe that there is still room for improvement in the
proposed method. As we mentioned in the previous section, one significant
challenge that emerged during our research was the Label Discrepancy between
OpenFace-generated and manual labels. To overcome this challenge, we think
the following strategies could be the future exploration.

• Mapping Between OpenFace and Manual Labels
One approach could be trying to find the correlation or mapping between
OpenFace-generated labels and manual labels. This mapping could help to
bridge the gap between these two sets of labels, potentially improving the
model’s performance by ensuring a more consistent ground truth across
both training and testing scenarios.

• Use of Manual Labels in Fine-tuning
Another approach is to use manual labels during fine-tuning, rather than
OpenFace-generated labels. We think this may align the training and
testing scenarios better.

Besides, the integration of more diverse and comprehensive pain datasets will
always be a possible solution. Such datasets will not only help to train the GAN
networks but also provides a more sufficient set of test cases for the classifier.

In sum, we think that future work could be more focused on mitigating
the problem of discrepancy between labels as well as introducing more painful
datasets.
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6.4 Conclusion

In conclusion, this research has presented an innovative method that uses GANs
for creating a balanced, and sufficiently diverse synthetic dataset of painful facial
expressions.

The study introduced a novel method, which uses the GANimation network
to control the magnitude of activation of each Action Unit (AUs) so that the
desired expressions can be synthesised. A unique approach was then employed
for fine-tuning GANimation network based on the UNBC-McMaster dataset,
which facilitated the within-domain generation and reduced domain variance.
Moreover, we provide a 3D registration technique in both the training and test-
ing phases, which can effectively manage the head-range problems. Finally, a
scoring mechanism was introduced to facilitate the generation of balanced, and
sufficiently diverse pain expressions through the fine-tuning GANimation net-
works.

The experiment result shows the effectiveness of the proposed method, high-
lighting the quality and potential values of improving the current APA ap-
proaches.
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Appendix A Appendix A: Generation Results Com-

parison

• Test subject: AK064 Input test image:

(a) Original input image (b) 2D alignment (c) 3D registration

Figure 42: Test Input of AK064.

Fig.43 is the result with a 2D alignment image as input:

(a) Without finetune (b) With finetune

Figure 43: Comparison of generated results (2D alignment)

Fig.44 is the result with a 3D registration image as input.
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(a) Without finetune (b) With finetune

Figure 44: Comparison of generated results (3D registration)
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• Test subject: IB109 Input test image:

(a) Original input image (b) 2D alignment (c) 3D registration

Figure 45: Test Input of IB109.

Fig.46 is the result with a 2D alignment image as input:

(a) Without finetune (b) With finetune

Figure 46: Comparison of generated results (2D alignment)

Fig.47 is the result with a 3D registration image as input.
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(a) Without finetune (b) With finetune

Figure 47: Comparison of generated results (3D registration)
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• Test subject: TV095 Input test image:

(a) Original input image (b) 2D alignment

Figure 48: Input test image of TV095

Fig.49 is the result with a 2D alignment image as input:

(a) Without finetune (b) With finetune

Figure 49: Comparison of generated results (2D alignment)

Fig.50 is the result with a 3D registration image as input.
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(a) Without finetune (b) With finetune

Figure 50: Comparison of generated results (3D registration)
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