View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        Automating the Ingredients Ordering Process in Restaurants: A Machine Learning-Powered System Approach

        Thumbnail
        View/Open
        Master_Thesis_Final_Version.pdf (386.6Kb)
        Publication date
        2023
        Author
        Hsieh, Sunny
        Metadata
        Show full item record
        Summary
        In this research, we aimed to automate the ingredients ordering process in restaurants. By labeling and analyzing a subset of dishes from an Indian restaurant's menu based in London, we were able to accurately predict the quantities of ingredients needed in a given time period. This has the potential to greatly improve the efficiency of the ingredients ordering process, reducing the need for manual tracking and ordering and potentially reducing waste. We designed a pipeline consisting of three machine learning components, a detector, a determinator, a promoter, and a reducer. The machine learning components predict the total ingredients needed for different time frames, and the detector and determinator prevent overstock and understock, respectively. The promoter suggests possible actions in the event of overstock, and the reducer produces a preliminary order. Linear programming techniques could be used to finalize the order if constraints are present. The machine learning components were evaluated using the R squared score, and all three had a very high accuracy. The overall performance of the pipeline was evaluated using three custom metrics, which showed excellent results. This demonstrates that it is possible to automate the ingredients ordering process, even for small, non-franchised restaurants. While our study focused on a specific restaurant, the algorithm may also be applicable to other food service organizations, such as supermarkets and fast food chains. However, further research is needed to fully evaluate its performance in a wider range of settings.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/43560
        Collections
        • Theses
        Utrecht university logo