View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        Carbon footprint of Lignin modified Asphalt mix

        Thumbnail
        View/Open
        Thesis Mehul Khandelwal GHG.pdf (2.239Mb)
        Publication date
        2019
        Author
        Khandelwal, M.
        Metadata
        Show full item record
        Summary
        The preeminent activity affecting the amount and rate of climate change is greenhouse gas (GHG) emissions from combusting fossil fuels (IPCC, 2014). The transport sector within the infrastructure uses many fossil fuel based products, especially in the construction of asphalt roads which contain a high proportion of fossil-fuel derived products. A cradle-to-grave Life cycle assessment of asphalt gives the GHG emission of 550 kton CO2 eq./ year equivalent to 23% of overall emissions of the infrastructure sector in the Netherlands (M. M. Bijleveld et al., 2015; Korevaar & Blok, 2018). The bitumen (fossil-based derivative) used in the asphalt mix is accountable for 16% of total GHG emissions of Zeer Open Asfalt Beton (ZOAB) layer, also known as porous asphalt in the Netherlands (Rijkswaterstraat, 2018). Since the asphalt sector is responsible for a considerable amount of emission, biomass could be a possible solution in reducing the GHG emission of this vital sector. Lignin one of the most abundant natural polymers (next to cellulose and hemicellulose) could be used as an alternative for bitumen, as it reflects the chemical structure of bitumen (van Vliet et al., 2016). Lignin can be supplied in large quantities as a by-product of paper and pulp mills and lignocellulosic biorefineries (Culbertson et al., 2016). To help explore the potential, this thesis aims to assess the GHG emission mitigation from lignin use in asphalt (ZOAB). The research focuses on lignin replacing up to 50% of bitumen in the asphalt mix (ZOAB).
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/33596
        Collections
        • Theses
        Utrecht university logo