View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        A study on the synthesis of a model CoMnO catalyst for FTO reactions

        Thumbnail
        View/Open
        Masterthesis Guusje Delen.pdf (2.161Mb)
        Publication date
        2016
        Author
        Delen, G.
        Metadata
        Show full item record
        Summary
        In this work, the synthesis of a model CoMnO catalyst is described. MnO was used in large amounts (up to 80 wt%) to enhance the lower olefin selectivity of cobalt. The lower olefin selectivity promotion by MnO was probed by the use of a bulk CoMnO compound. This bulk system was characterised using SEM, XRD and TPR and was used to determine FTO reaction optima (temperature, pressure). TPR indicated that MnO may have a positive effect on the reducibility of cobalt oxide. In a range of 5-20 bar and 220-280°C, optima were found at 10 bar and 240°C. Subsequently, using colloidal synthesis, model CoMnO catalysts were made. Three classes of colloidal particles were synthesised: tripod, tetrahedral and hexagonal colloids of 60, 20 and 16 nm, respectively. These particles were characterised using TEM, STEM-EDX, XRD and XPS. The colloidal particles were made up of a uniform distribution (STEM-EDX) of cobalt and manganese which are present as separate CoO and MnO species (XRD, XPS), in contrast to a mixed CoMnO spinel structure for the bulk system (XRD). At low pressures (1 bar), the tetrahedral catalyst behaves as a FTS catalyst with C5+ as its main fraction (45%) and a lower olefin fraction of 35%. Through the calcination of the tetrahedral particles, the crystal structure was changed to a mixed spinel phase. This crystal structure change resulted in an increased activity, a decreased lower olefin selectivity (24%) and an increased C5+ selectivity (60%). It appeared that the crystal structure of the CoMnO was of large influence on the catalytic properties of the catalysts.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/23950
        Collections
        • Theses
        Utrecht university logo