View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        Cobordism theories: An algebraic journey from topology to geometry

        Thumbnail
        View/Open
        masterscriptie - Julian Lyczak.pdf (968.3Kb)
        Publication date
        2015
        Author
        Lyczak, J.T.
        Metadata
        Show full item record
        Summary
        Cobordism theories have been studied for a long time in various forms and guises. Many of these theories were shown to have a very nice structure and became important tools in the study of differentiable manifolds. When Quillen gave an axiomatic description for the theory of complex cobordism, it became possible to define an equivalent tool for the language of schemes. Levine and Moore translated Quillen's axioms into algebraic geometry and defined algebraic cobordism. This theory has strong relations with the Chow group and K-theory, just like cobordism theories in algebraic topology relate to homology and K-theory of vector bundles. Algebraic cobordism was given a geometric interpretation by Levine and Pandharipande. Lee and Pandharipande were able to extend this to a theory of schemes with bundles, similar to the theory Atiyah and Singer used in their proof of the Atiyah-Singer index theorem. Using this theory Tzeng was able to prove conjectures of Vainsencher and Göttsche about nodal curves on surfaces. This generalises the result of Fomin and Mikhalkin that the number of nodal curves through a specific number of points on the projective plane is a polynomial in the degree of the curve, to an arbitrary surface.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/19380
        Collections
        • Theses
        Utrecht university logo