Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorDajani, dr. K.
dc.contributor.authorHaringa, L.
dc.date.accessioned2014-09-24T17:01:02Z
dc.date.available2014-09-24T17:01:02Z
dc.date.issued2014
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/18449
dc.description.abstractUsing mathematical techniques at undergraduate level, an introduction to axiomatic probability theory and stochastic calculus facilitates the classic derivation of the Black-Scholes-Merton approach in valuating a European option. Brownian motion is derived as the limit of a scaled symmetric random walk and its quadratic variation is determined. This serves to evaluate the Itô integral and the Itô-Doeblin change-of-variables formula. After employing these equations to arrive at the partial differential equation for the option value, the solution is determined by the use of an equivalent risk-neutral measure.
dc.description.sponsorshipUtrecht University
dc.format.extent477808
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleOption pricing
dc.type.contentBachelor Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsfinance,stochastics,option,stochastic calculus,Black-Scholes-Merton
dc.subject.courseuuWiskunde


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record