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Abstract

Using mathematical techniques at undergraduate level, an introduction to axiomatic
probability theory and stochastic calculus facilitates the classic derivation of the
Black-Scholes-Merton approach in valuating a European option. Brownian motion
is derived as the limit of a scaled symmetric random walk and its quadratic variation
is determined. This serves to evaluate the Itô integral and the Itô-Doeblin change-of-
variables formula. After employing these equations to arrive at the partial differential
equation for the option value, the solution is determined by the use of an equivalent
risk-neutral measure.
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Chapter 1

Preface

This paper was written as a bachelor’s thesis under supervision of dr. Karma Dajani.
It seeks to provide an introduction to the subjects of stochastic calculus as applied
to the theory of mathematical finance. Steven E. Shreve’s Stochastic calculus for
finance II has been of great help and has served as a guide for this writing. An
attempt has been made to link this approach to more formal theory; these subjects
are however for the largest part beyond the scope of this paper. In particular, the
theory of stochastic integration, such as presented in Henry McKean’s Stochastic
integrals, would be an appropriate start for further study.
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Chapter 2

Stochastics and time

In this chapter, elements of probability and measure are presented to support the
forthcoming theory. Most subjects are concisely stated and serve mainly as reference.
For a comprehensive introduction, see for example [Ric07] on probability theory and
statistics, and [Sch05] on measure theory.

2.1 Basics

Let (Ω,F , P ) be a probability space; that is,

• Ω is a set containing abstract events ω ∈ Ω, thought to occur randomly,

• F is a σ-algebra on Ω, a family of subsets of Ω that includes among its
elements Ω and the complement of each F ∈ F , and that is closed under
countable union, and

• P : F → [0, 1] is a probability measure: it satisfies P (Ω) = 1 and it is
countably additive on F .

Let furthermore B be the Borel σ-algebra on R. The Borel σ-algebra is generated
by the open sets in R and for this reason also called the topological σ-algebra on
R. In general, a family of subsets is said to generate a σ-algebra if this σ-algebra as
small as possible while containing all subsets and satisfying the σ-algebra axioms.

Let C(R) := {[a, b] ( R} be the set of closed real intervals, then the σ-algebra
generated by C(R) is B [Sch05, 3.7] as well. This implies that all unions and
intersections of open and/or closed sets are Borel sets. In general, a σ-algebra A
on a set S generated by a family T of subsets of S is written σ(T ) = A.

A random variable X : Ω → R is a function that assigns any event ω ∈ Ω a real
value X(ω) ∈ R. As such it may be thought of as a quantification of events. If the
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event ω takes place, X results in X(ω). The probability of X resulting in a value
contained in some Borel set B is given by the distribution measure µX : B → [0, 1],
which itself is based on P by the definition

µX(B) := P ({ω ∈ Ω | X(ω) ∈ B})

or in common shorthand with x ∈ img(X),

µX(B) = P ({x ∈ B}) .

Any probability measure defined on C(R) extends uniquely to B [Sch05, 5.7], so the
distribution measure defined as µX ([a, b]) completely specifies µX : B → R.

Usually it is mathematically convenient to work with the image of a random vari-
able and its distribution measure, as opposed to the abstract σ-algebra and the
corresponding probability measure P directly. A particular case is when the random
variable X is continuous with a specified probability distribution function f ; in this
case, the probability that X results in [a, b] is given by∫ b

a

f(x)dx,

which is equal to the general integral∫
ω∈Ω

1AdP (ω) with A := {ω ∈ Ω | X(ω) ∈ [a, b]}.

Notice the appearance of an indicator function: with F ∈ F , the indicator of F is

1F (ω) :=
{

1 if ω ∈ F ,
0 if ω /∈ F .

Common in statistics is the normally distributed random variable X with mean µ
and variance σ2, its probability distribution function f is given by

(2.1) f(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2

and this fact is written X ∼ N (µ, σ2). If in particular X ∼ N (0, 1), the random
variable is said to follow standard normal distribution. It has a cumulative density
function given by

(2.2) Φ(z) :=
∫ z

−∞

1√
2π
e−

x2
2 dx.

Probability distribution functions also come in handy when computing the expecta-
tion E of a function g : img(X)→ R of X, since

E[X] =
∫ ∞
−∞

g(x)f(x)dx.

while the expectation in general is given by

E[X] =
∫
ω∈Ω

g (X(ω)) dP (ω).
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If P (X ∈ B) = 1 for B ⊆ img(X), then it is said that X ∈ B almost surely.
Notice that it is possible that ∃ω ∈ Ω : X(ω) /∈ B, but it is not probable that
X /∈ B; that is, P ({ω ∈ Ω | X(ω) /∈ B}) = 0.

When the pre-image of any Borel set is an element of F—that is, when

∀B ∈ B : X−1(B) ∈ F ,

then X is F-measurable. Notice that for any Borel set B̃ such that B̃∩img(X) = ∅
it holds that X−1(B̃) = ∅ ∈ F , and any σ-algebra contains ∅ by definition. The
definition of measurability implies that any result x ∈ img(X) can be uniquely
identified with a subset of events X−1(x) ⊆ Ω, since X−1(x) ∈ F . As such, X
indicates which events ω ∈ F may have happened. Conversely, with F ∈ F , the
sets X(F ) cover the full range of results img(X) ⊆ R. For example, take Ω = R
and F = {∅,Q,R\Q,R} (a σ-algebra), and let 1Q : R→ {0, 1} be given by

(2.3) 1Q(ω) =
{

0 if ω /∈ Q,
1 if ω ∈ Q.

an indicator for rational numbers among the real numbers. Then 1Q is F-measurable:
with ω̃ ∈ Ω, a result 1Q(ω̃) ∈ {0, 1} indicates whether ω̃ is rational or not, but does
not reveal more information on ω̃.

General measures µ : F → R≥0 satisfy both µ(∅) and countable additivity. In
measure theory, measures may be employed to define a general kind of integrals,
as has been implicitly suggested above. For a full treatise see for example [Sch05].
For any measure µ and any function f : Ω → R, this function is µ-integrable if∫
|f |dµ < ∞. The following result is typical for the technique used in measure

theory.

2.1.1 Theorem (Monotone convergence). Let (X,F , µ) be a measure space and
let uj : X → R with j ∈ N≥1 be µ-integrable functions such that uj ≤ uj+1
and with (pointwise) limit u := limj→∞ uj . Then u is µ-integrable if and only if
limj→∞

∫
ujdµ <∞, and if so, then∫
udµ = lim

j→∞

∫
ujdµ.

Proof. See for instance [Sch05, theorem 11.1].

The above theorem serves to prove the following proposition, in turn required for
the solution to the option pricing formula in chapter 4.

2.1.2 Proposition (Change of probability measure). Let Z : Ω→ R≥0 be a random
variable satisfying

E[Z] =
∫
ω∈Ω

Z(ω)dP (ω) = 1.

With F ∈ F it holds that

P̃ (F ) :=
∫
ω∈Ω

1F (ω)Z(ω)dP (ω)

is itself a probability measure.
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Proof. Since Z and P are nonnegative, so is P̃ . Furthermore

P̃ (Ω) =
∫
ω∈Ω

Z(ω)dP (ω) = E[Z] = 1

by definition, so it remains to be shown that P̃ satisfies countable additivity.

Let (Fn)n∈N≥1
⊆ F be disjoint and let F :=

⋃
n∈N≥1

Fn. Define Bj :=
⋃j
n=1 Fn.

Notice 1Bj is P -integrable since
∫

1BjdP = P (ω ∈ Bj), and that

lim
j→∞

1Bj = 1F .

As such,

P̃ (F ) =
∫
ω∈Ω

1F (ω)Z(ω)dP (ω) = lim
j→∞

∫
ω∈Ω

1Bj (ω)Z(ω)dP (ω)

by monotone convergence 2.1.1. Since Fn are disjoint, 1Bj (ω) =
∑j
n=1 1Fn(ω).

Therefore

P̃ (F ) = lim
j→∞

∫
ω∈Ω

j∑
n=1

1Fn(ω)Z(ω)dP (ω)

= lim
j→∞

j∑
n=1

∫
ω∈Ω

1Fn(ω)Z(ω)dP (ω) =
∞∑
n=1

P̃ (Fn),

showing P̃ satisfies countable additivity, so it is a probability measure.

2.2 Stochastic processes

Stochastic phenomena through time—as opposed to the static framework of the
previous section—may be modeled by stochastic processes adapted to a filtration.
Both depend on the same time variable t, and intuitively, a filtration reflects the
information available at this time. The process is random for all time ‘after’ t, and
nonrandom (known) for all time up to t. These concepts will be used to simulate
the random path of an asset’s value.

Take T ∈ R≥0 and t ∈ [0, T ]. A filtration is an inclusion of σ-algebras F(t) on Ω:

∀t, ∀s ∈ [0, t] : F(s) ⊆ F(t).

Notice for each t there is a probability space (Ω,F(t), P ). An adapted stochastic
process is a sequence (X(t))t∈[0,T ] (X(t) for short) of random variables X(t) :
Ω → R such that ∀t it holds that X(t) is F(t)-measurable. Notice the variable
t does not correspond to the domain Ω; a more correct (but in this paper rarely
used) notation is Xt : Ω → R with realization Xt(ω). As t increases, if some
inclusions of the filtration are strict, the σ-algebra F(t) becomes finer—contains
more, thus smaller, subsets of Ω. Because X(t) is F(t)-measurable, this implies
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that for some event ω̃ ∈ Ω, learning a result Xt(ω̃) ∈ img (Xt) reveals more
information on ω̃ as t increases. Often F(0) = {∅,Ω}, the trivial σ-algebra, and
F(T ) = σ

(
{X−1

t (B) | B ∈ B ∧ t ∈ [0, T ]}
)
, such that X(0) must be a constant

(noninformative) function and X(T ) reveals the most information of all X(t) about
the event that its result indicates.

It may be useful to imagine Ω to consist of blueprints for functions [0, T ]→ R that
are realizations of the random variable X(t). As such, the path of X(t) is ‘chosen’
deterministically by one random event in Ω, but the outcome is only gradually
revealed as t increases.

The above concepts can be applied for t ∈ S for any ordered index set S, discrete
or continuous. To reflect the assumed characteristics of financial trade, this paper
is restricted to the continuous interval S = [0, T ].

With a filtration gradually uncovering information, the expectation of a stochastic
process X(t) is dependent on the time of evaluation. With s ∈ [0, t], the conditional
expectation

E [X(t)|F(s)]

represents the expectation if the information contained in F(s) is revealed. If
this information is not relevant to the expectation, the random variable X(t) is
independent of F(s), and

E [X(t)|F(s)] = E [X(t)] .

In finance, an important class of stochastic processes is that of the martingales. A
stochastic process (X(t))t∈[0,T ] adapted to (F(t))t∈[0,T ] is a martingale if for all
s ∈ [0, t] it holds that

(2.4) E [X(t)|F(s)] = X(s);

that is, at any time s the expectation of future values is equal to the current value.

Likewise significant to finance is the Markov property. Let (X(t))t∈[0,T ] be a
stochastic process adapted to (F(t))t∈[0,T ]. Take s, t ∈ [0, T ] with s ≤ t and
let f : R→ R≥0 be a nonnegative and Borel-measurable function. If for all such s,
t, and f , there exists another Borel-measurable function g : R→ R such that

(2.5) E [f (X(t))|F(s)] = g (X(s))

then X(t) is called a Markov process. Essentially this means that for any t ≥ s, the
expected value of X(t) at time s depends only on the current time s and the value
of X(s). In particular, any values X(u) with u ∈ [0, s[ are not relevant for the ex-
pectation; hence, the Markov property is sometimes referred to as memorylessness.

In further chapters, a stochastic process (X(t))t∈[0,T ] will often be denoted by the
shorthand X(t).
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2.3 Intermezzo: continuous discounting

Finance, dealing with money, is frequently concerned with calculating profit from
interest on value. A typical approach with mathematical attractiveness (and limited
real-world applicability) is presented in this section.

Take p ∈ N≥0 and r ∈ R≥0. Call p a period and let r be the nominal or flat rate
of return per period of some value Vp, meaning that

Vp = (1 + r)p · V0.

Notice the convention 1+r, which illustrates that an interest rate is not an interest
factor but rather a factorial increment.

An interest rate is said to compound m times per p if the value of Vp is instead
given by

Vp =
(

1 + r

m

)mp
· V0.

The quantity
(
1 + r

m

)m − 1 is called the effective interest rate and it is strictly in-
creasing in m. It is therefore important in practical applications to indicate whether
an interest rate is nominal or effective.

As the frequency of compounding approaches infinity, the interest factor approaches
a familiar function.

lim
m→∞

(
1 + r

m

)mp
= erp.

The quantity erp − 1 is referred to as the maximal effective interest rate, and if
interest is calculated this way it is said to be continuously compounding. As such
it makes more sense to express a continuously compounding value Vt in continuous
time t ∈ R as

Vt = ertV0.

For s ∈ R≥0, the value Vs is easily expressed in terms of the value Vt.

Vs = e−r(t−s)Vt.

If s < t, this is known as continuous discounting, and it will be employed in chapter
4 with respect to interest rates on money and stock.

An alternative approach is to take a single interest factor (1 + r)t; however this
function doesn’t share the nice properties of ert with respect to integration and
differentiation.

As a sidenote, if a continuously compounding interest rate r(t) is a known function
of time, the interest factor from s to t is calculated as

e

∫ t
s
r(τ)dτ

.
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Chapter 3

Stochastic calculus

The subject of this chapter is the calculus developed specifically to deal with in-
tegrals of stochastic variables. Specifically, the value aggregated by a stochastic
process through time, with respect to another stochastic process, may be computed
by the aid of the Itô integral presented in section 3.4. The first section concerns the
stochastic process central to the model presented by Black and Scholes [BS73] to
model asset value through time, the Brownian motion. First conceived by Robert
Brown upon observing the apparently indeterministic, random movements of parti-
cles through water, Brownian motion is also called the Wiener process after Norbert
Wiener, who granted the Brownian motion with a solid mathematical foundation—
not included in this paper.

3.1 Brownian motion

In this section Brownian motion is introduced as the limiting case of the symmetric
random walk. A symmetric random walk is a discrete-time binomial stochastic
process that with equal probability increases or decreases one unit per timestep.
Brownian motion is obtained as the length of the longest timestep approaches 0.
As such, Brownian motion is a continuous-time binomial stochastic process, which
itself serves as the basis of the geometric Brownian motion, which was used by
Fischer Black and Myron Scholes in their derivation of a risk-neutral option hedging
strategy.

Consider the instantaneous events u and d, which may be thought of as representing
an “up” and a “down” move. Let Ω be the event space consisting of infinite
sequences of u and d:

ω ∈ Ω⇔ ω = ω1ω2...ωj ... such that ωj ∈ {u,d}, with j ∈ N≥1,

and let the probabilities that the j-th element of any ω ∈ Ω be either u or d be
equal; that is, 1

2 .
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Let then the j-th step, either up or down, be the random variable Xj : Ω→ {−1, 1}
with

Xj(ω) =
{
−1 if ωj = d,
1 if ωj = u,

all independent, and define the symmetric random walk for k ∈ N≥0 by

Mk :=
k∑
j=1

Xj for k ∈ N≥1 and M0 := 0

the ‘position’ after k ‘steps’. Notice since the steps are random, so is the entire
position; hence the name random walk. Let (Fk)k∈N≥0

be a filtration such that
(Mk)k∈N≥0

is adapted, and such that for all k < ` it holds that M` is not Fk-
measurable—this means that at step k the ‘future’ path is still random, and it implies
that the increment Mk+1−Mk is independent of Fk. Two nonequal increments are
also independent, as follows from the independence of all Xj . It is easily seen that
Mk is a martingale; any step is either likely to be up or down, thus the expectation
is to remain stationary. Lastly, the process (Mk+` −Mk)`∈N≥0

is again a random
walk.

Brownian motion is obtained as a limit case of the scaled symmetric random walk

(3.1) W (n)(t) := 1√
n
Mnt.

Notice the introduction of t ∈ [0, T ]; if nt is not an integer then Mnt is defined by
linear interpolation between the floor bntc and ceiling dnte entiers of nt,

Mnt = (dnte − nt)Mbntc + (nt− bntc)Mdnte,

from which it follows that a path of W (n)(t) is continuous. The process is a
martingale; take s ∈ [0, t], then

E
[
W (n)(t)

∣∣∣F(s)
]

=E
[
W (n)(t)−W (n)(s) +W (n)(s)

∣∣∣F(s)
]

=E
[
W (n)(t)−W (n)(s)

∣∣∣F(s)
]

+ E
[
W (n)(s)

∣∣∣F(s)
]

=E
[
W (n)(t)−W (n)(s)

]
+ E

[
W (n)(s)

∣∣∣F(s)
]

=0 +W (n)(s),

sinceW (n)(t)−W (n)(s) is independent of F(s) and its expectation is zero because
the expectations of all Xj are zero.

Donsker’s theorem asserts that if (Xj)j∈N≥1 is any independent and identically
distributed sequence of random variables with E[Xj ] = 1 and variance V[Xj ] = 1,
then as n→∞ the scaled sum with linear interpolation 3.1 converges in distribution
to the Brownian motion W (t)—short for (W (t))t∈[0,T ]. Since by definition

V[Xj ] = E
[
X2
j − (E[Xj ])2

]
= E

[
X2
j − 0

]
= 1

2 · (−1)2 + 1
2 · 1

2 = 1,
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Brownian motion is indeed the (probability) limit case of the scaled symmetric
random walk. A thorough exposition of this subject is [Pol84]. Like the scaled
symmetric random walk W (t) is a martingale, is continuous, has independent (non-
overlapping) increments, and the expectation of any increment W (t) −W (s) for
s ∈ [0, t] is zero. Notably, increments are distributed normally with variance t− s:

W (t)−W (s) ∼ N (0, t− s)

as shown in [Shr10, theorem 3.2.1] by use of the moment-generating function of
the normal distribution. As with the random walk, (W (t+ u)−W (t))u∈[0,T−t] is
again a Brownian motion. The limit n→∞ suggests, intuitively, that the outcome
space Ω of binary sequences is ‘squeezed’ into a continuum. For a more formal
discussion, see [McK69, section 1.1], who defines Brownian motion as the space of
all continuous paths t 7→ W (t) (equivalent to the outcome space) with imposed
probabilities such that these paths form a Gaussian family—a generalization of
random variables with a normal (Gaussian) distribution. Such statements were
proved by Paul Lévy [Lév48] and simplified by Zbigniew Ciesielski [Cie61].

For each t ∈ [0, T ], Wt is a random variable Ω→ Ct, with Wt(ω) ∈ Ct a realization
(path) up until t, and Ct the set of all those paths: Ct := {Wt(ω) | ω ∈ Ω}. A
typical filtration for a Brownian motion is the family of σ-algebras generated by the
pre-images of (W (t))t∈[0,T ]. Such a filtration is given by(

σ
(
{W−1

t (C) | C ∈ Ct}
))

t∈[0,T ]
.

Throughout, W (t) (as a random variable) denotes a Brownian motion adapted to a
filtration (F(t))t∈[0,T ] which is such that any incrementW (t)−W (s) is independent
of F(s). Together with the probability measure P derived from the equal probability
of up and down steps and the event space Ω, (Ω,F(t), P )t∈[0,T ] is a family of
probability spaces rendering W (t) formally F(t)-measurable. In this paper the
Brownian motion’s filtration is of little relevance aside from its formal introduction.
In particular, the different sets of information that the filtration may present are not
considered (and are relatively straightforward anyway). In the financial application,
the containment of consecutive σ-algebras corresponds to the perception of the
unknown future gradually unfolding as time advances. Instead of emphasizing the
characterization of Brownian motion as a stochastic process, it may be more helpful
to consider it as a stochastic function. Each ω ∈ Ω (continuous coin-toss space) may
be regarded as a ‘blueprint’ for a full Brownian motion path (realization) [0, T ]→ R,
which then motivates the notationW (t) forW as a function of t ∈ [0, T ]. It should
be noted, however, that W (t) remains unknown throughout the following theory
even when regarding the final time T—in fact, this is an elementary property of
financial analysis.

3.2 Properties of Brownian motion

Take [0, t] ( R and let

(3.2) Π = {t0 = 0, t1, ..., tn = t} ( [0, t],∀j ∈ {0, 1..., n− 1} : tj < tj+1
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be a partition of [0, t]. Define furthermore the mesh

‖Π‖ := max{tj+1 − tj | j ∈ {0, 1, ..., n1}}.

Notice that ‖Π‖ → 0 implies, informally, that Π→ [0, t]. The limit procedure con-
sists of taking increasingly finer partitions—adding more points in [0, t] to the parti-
tion, increasing n—such that the mesh approaches zero. With f : R ⊇ dom(f)→
R any function defined on [0, t], the quadratic variation of f at t

(3.3) [f, f ] (t) := lim
‖Π‖→0

n−1∑
j=0

(f(tj+1)− f(tj))2

and as such, appears to be related the length of the path f(τ) as τ increases
from 0 to t. However, for such f that have a continuous derivative on ]0, t[, the
quadratic variation turns out to be 0, as follows from the mean value theorem of
analysis [Shr10, p.101]. This theorem does not hold for Brownian motion, which
is differentiable nowhere, as shown by Wiener. Instead the following proposition
holds.

3.2.1 Proposition. The quadratic variation of Brownian motion W at time t is

[W,W ] (t) = t

almost surely.

Proof. Define with the partition and mesh of 3.2 the partition quadratic variation

QΠ :=
n−1∑
j=0

(
W (tj+1)−W (tj)

)2
and notice that ‖Π‖ → 0 implies that QΠ → [W,W ] (t). As QΠ is a random
variable, to prove that QΠ converges to T , it will be shown that the expectation of
QΠ is T , while its variance approaches 0.

In general the following equations with regards to the variance V[X] of a random
variable X hold.

V[X] =E
[
(X −E[X])2

]
=E

[
X2]− 2E [X] E [X] + (E [X])2 = E

[
X2]− (E [X])2

=E
[
X2 − (E [X])2

]
For the expected value of the partition quadratic variation, observe that

E [W (tj+1)−W (tj)] = 0,

12



so by the properties of Brownian motion, indeed

E [QΠ] =
n−1∑
j=0

E
[(
W (tj+1)−W (tj)

)2]

=
n−1∑
j=0

E
[(

W (tj+1)−W (tj)−
(
E [W (tj+1)−W (tj)]

))2
]

=
n−1∑
j=0

V [W (tj+1)−W (tj)]

=
n−1∑
j=0

(tj+1 − tj) = t0 + tn = t,

independent of ‖Π‖.

With regards to the variance, note first that

E
[
(W (tj+1)−W (tj))4

]
= 3 (tj+1 − tj)2

,

which follows from computing the kurtosis of any normal random variable, such as
W (tj+1)−W (tj) (see for instance [Shr10, exercise 3.3]). Using again

E
[
(W (tj+1)−W (t))2

]
= V [W (tj+1)−W (t)] ,

it follows that

V [QΠ] =
n−1∑
j=0

V
[
(W (tj+1)−W (t))2

]

=
n−1∑
j=0

E
[(

(W (tj+1)−W (t))2 − (E [W (tj+1)−W (tj)])2
)2
]

=
n−1∑
j=0

E
[
(W (tj+1)−W (tj))4

]

− 2
n−1∑
j=0

(tj+1 − tj) E
[
(W (tj+1)−W (tj))2

]
+
n−1∑
j=0

(tj+1 − tj)2

=2
n−1∑
j=0

(tj+1 − tj)2 ≤ 2‖Π‖t.

Clearly lim‖Π‖→0 V [QΠ] = 0, so lim‖Π‖→0QΠ = [W,W ] (t) = t almost surely.

It is worth noting that the Brownian motion quadratic variation [W,W ] (t) is in fact
random itself; however the probability that it has a realization different from t is 0.

As mentioned in the previous section, the Brownian motion incrementsW (t)−W (s)
follow N (0, t−s). In particular E [W (t)] = E [W (t)− 0] = E [W (t)−W (0)] = 0.
Remarkably, this quality is implied by any process which adheres to four basic
properties, as shown by Lévy.
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3.2.2 Theorem (Lévy in one dimension). A martingale w(t) with continuous paths,
starting at zero, with quadratic variation [w,w] (t) = t is a Brownian motion.

Proof. See for example [Shr10, theorem 4.6.4].

Brownian motion is a Markov process—one motivation for its application in financial
modeling.

3.2.3 Proposition. Brownian motion is a Markov process, which means by 2.5
that for any s, t ∈ [0, T ] with s ≤ t and any nonnegative Borel-measurable function
f : R→ R≥0, there exists a Borel-measurable function g : R→ R such that

E [f (W (t))|F(s)] = g (s,W (s)) .

Proof. Rewrite

E [f (W (t))|F(s)]

as

E [f (W (t)−W (s) +W (s))|F(s)]

and notice A := W (t)−W (s) is distributed N(0, t− s) and independent of F(s)
by the properties of Brownian motion, while B := W (s) is F(s)-measurable, hence,
nonrandom. Therefore, integrating with the normal distribution function,

E [f (A+B)|F(s)] =
∫ ∞
−∞

f(a+B) 1√
2π(t− s)

e−
a2

2(t−s) da =: g(B)

and notice g only depends on the value of W at time s by B = W (s). Since g is
continuous, it is Borel-measurable. This completes the proof.

To summarize, the Brownian motion (W (t))t∈[0,T ] satisfies the following properties.

• W (0) = 0.

• E [W (t)−W (s)] = 0.

• A path W (t) is continuous almost surely.

• Brownian motion is a martingale.

• Brownian motion is a Markov process.

• [W,W ] (t) = t.

• W (t)−W (s) ∼ N (0, t− s).

• The paths of a Brownian motion are not differentiable.

Since stock value is strictly positive, to model stock value behavior often a process
called geometric Brownian motion is employed, introduced in chapter 4.

14



3.3 Comparison of computations of integrals

Basically, integrals measure signed area, enclosed by a function’s graph and its
argument’s axis. In many cases it is convenient to measure this area with respect
to a quantity with more meaning than the function’s argument. For example, in
the option pricing formula to follow in the next chapter, the area enclosed by the
graph of the (positive) amount of stock held at time t and the t-axis itself is a
number with little financial relevance, but if this area is measured by the stock’s
value at time t, the integral represents the total value of the investment up until
its right bound of integration. In the next section a method will be developed
to evaluate such integrals with respect to stochastic processes, like the Brownian
motion. This section presents a brief overview of Riemann and Lebesgue integrals,
and an introduction to the stochastic integral known as the Itô integral.

Let f : R � R be a function. If f is bounded and (Lebesgue) almost everywhere
continuous on the nonsingleton interval [a, b] ⊆ dom(f), the Riemann integral
exists and is computed using directly the relationship between x ∈ [a, b] and f(x)
as prescribed by the function. Adjacent rectangles of fixed width h ∈ R>0 inscribed
between the graph of f and the x-axis, with their left edge at x in this case,
measure approximately hf(x), and their sum becomes the exact area as h → 0.
More specifically, if and only if a function is Riemann integrable, both the sum of the
infimum rectangle areas and the sum of the supremum rectangle areas converge to
the same value, which is the integral. For instance, the Riemann integral

∫ 1
0 x

pdx,
for p ∈ N≥1, may be computed using Faulhaber’s formula (see for example [Knu93])

n∑
k=1

kp = 1
p+ 1

p∑
`=0

(−1)`
(
p+ 1
`

)
B`n

p+1−`, which also equals
n∑
k=0

kp

with Bernoulli numbers B` and B1 = − 1
2 . The Bernoulli numbers have several

connections to number theory and may be given by many expressions. The Bernoulli
number B1 is either 1

2 or − 1
2 (the others are unambiguously defined) and the

Bernoulli numbers with B1 = 1
2 are called the first Bernoulli numbers, while the

other case is referred to as the second Bernoulli numbers. An explicit definition of
the first Bernoulli numbers is

B` =
∑̀
w=0

w∑
v=0

(−1)v
(
w

v

)
v`

w + 1

and the first eight (first and second) Bernoulli numbers are B0 = 1, ± 1
2 ,

1
6 , 0, − 1

30 ,
0, 1

42 , and B7 = 0. For ` > 1, all Bernoulli numbers with odd ` are zero.

The Riemann integral may be computed as∫ 1

0
xpdx = lim

n→∞

n−1∑
j=0

1
n

(
j

n

)p
= lim
n→∞

1
p+1

∑p
`=0(−1)`

(
p+1
`

)
B`(n− 1)p+1−`

np+1

= 1
p+ 1 lim

n→∞

p∑
`=0

(−1)`
(
p+ 1
`

)
B`

(n− 1)p+1−`

np+1 .
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In the summation, the ` = 0 converges to 1 when n → ∞, while all other terms
converge to 0 because the highest power of n is in the denominator. The summation
uses the minimum rectangle area 1

n

(
j
n

)p for the j-th rectangle; it is easily seen that
using the maximum area 1

n

(
j+1
n

)p makes no difference; in this case∫ 1

0
xpdx = lim

n→∞

n−1∑
j=0

1
n

(
j + 1
n

)p
= lim
n→∞

n∑
j=1

1
n

(
j

n

)p

= 1
p+ 1 lim

n→∞

p∑
`=0

(−1)`
(
p+ 1
`

)
B`n

−`.

Because the Riemann integral depends on the convergence of the infimum and
supremum of f within contracting intervals, some functions that are particularly
discontinuous cannot be integrated using this method. Continuing the above ex-
ample, multiplying xp by the rational indicator 1Q 2.3 yields a function that takes
minimum value 0 and maximum value equal to the upper bound of the contracting
interval in [0, 1]. The Lebesgue integral of f over [a, b] is a limit procedure that par-
titions f ([a, b]) into increasingly smaller subsets of function values and measures
those by the Lebesgue measure on their pre-image. Thus can be computed the
Lebesgue integral∫ 1

0
1Qx

pdλ(x) = lim
n→∞

n−1∑
j=0

j

n
λ

({
x ∈ [0, 1]

∣∣∣∣x ∈ Q ∧ xp ∈
[ j
n
,
j + 1
n

[})
which is 0 because the set of rational numbers in any real interval has Lebesgue
measure 0. The single value 1 ∈ f ([0, 1]) has been discarded; this makes no
difference for the integral as the pre-image of 1 is the set {1}, which also has
Lebesgue measure 0. Observe that although the Lebesgue integral also partitions
an interval [0, 1], this is in the image of f and not in its domain, as was the case
with the Riemann integral. Note that Lebesgue integrals on R are equivalent to
Riemann integrals whenever the latter are defined [Sch05, 11.8].

As a final example, the Riemann-Stieltjes integral is an intermediary construction,
using the Riemann approach to integrate a real function f with respect to another
real function g. In this example the integration is over [0, t], but any real interval
is satisfactory. Define a partition Π as in 3.2, then the Riemann-Stieltjes integral is
given by∫ t

0
f(τ)dg(τ) := lim

‖Π‖→0

n−1∑
j=0

f(t∗) (g(tj+1 − tj))

with t∗ ∈ [tj , tj+1]. If g is differentiable and D[g] is continuous, then the Riemann-
Stieltjes integral is equal to the Riemann integral∫ t

0
f(τ)D[g](τ)dτ.

A sufficient condition for the existence of the Riemann-Stieltjes integral is that f is
continuous and the variation (see next section) of g is finite.

In the next section it will be argued that the above procedures are insufficient to
evaluate integrals with respect to a Brownian motion.
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3.4 Itô calculus

Take henceforth T > 0 such that [0, T ] is not a singleton and letW (t) be a Brownian
motion adapted to some filtration F(t). Recall (Ω,F(t)) are measure spaces for
each t ∈ [0, T ].

With ∆(t) a stochastic process also adapted to F(t), the Itô integral

I(t) :=
∫ t

0
∆(τ)dW (τ)

evaluates the aggregate value of ∆(t) over [0, t] as measured by W (t). Notice ∆(t)
is F(t)-measurable by the definition of an adapted process, as is W (t). As such,
(I(t))t∈[0,T ] is a stochastic process adapted to F(t) itself.

IfW (t) has bounded variation then I(t) can be evaluated using a Riemann-Stieltjes
integral. Consider a partition again a partition 3.2. The aggregated (first-order)
variation FO of W (t) on the interval [0, t] is defined as

FO[W ](t) := lim
‖Π‖→0

n−1∑
j=0
|W (tj+1)−W (t)|,

with again a partition with mesh approaching zero, as in 3.2. However, the following
proposition shows that the variation of W (t) is almost surely unbounded.

3.4.1 Proposition. For any t ∈ ]0, T ] it holds that FO[W ](t) =∞ almost surely.

Proof. Suppose instead that W (t) has bounded variation on [0, t]; that is, that
FO[W ](t) <∞. For the quadratic variation it follows that

[W,W ] (t) = lim
‖Π‖→0

n−1∑
j=0

(W (tj+1)−W (tj))2

≤ lim
‖Π‖→0

max
j∈{0,1,...,n−1}

{|W (tj+1)−W (tj)|}

·
n−1∑
j=0
|(W (tj+1)−W (tj)|.

AsW (t) is continuous, maxj∈{0,1,...,n−1}{|W (tj+1)−W (tj)|} converges to 0, while

lim
‖Π‖→0

n−1∑
j=0
|(W (tj+1)−W (tj)| = FO[W ](t)

is finite. It then follows that [W,W ] (t) ≤ 0, which is almost surely in contradiction
with proposition 3.2.1.

Furthermore, since W (t) has no derivative,∫ t

0
∆(τ)D[W ]dτ

17



does not exist. For these reasons Kiyoshi Itô developed a different approach to
evaluating I(t). The construction shows some similarities to the Lebesgue integral.
The full formal approach is beyond the scope of this paper; see for instance [McK69,
section 2.2]. Summarizing that discussion, first note a nonanticipating process
(∆(t))t∈[0,T ] satisfies: ∀s ∈ [0, t] : ∆(t) − ∆(s) is independent of F(s). For
the definition of the integral, it is required that ∆(t) is nonanticipating, F(t)-
measurable, and that ∆(t) is square-integrable, meaning

(3.4) E
[∫ t

0
(∆(τ))2

dτ

]
=
∫
ω∈Ω

(∫ t

0

(
∆τ (ω)

)2
dτ

)
dP (ω) <∞.

Notice this expectation is taken with respect to the probability space (Ω,F(t), P ).

It can then be shown that there is a sequence (∆n(t))n∈N≥1
of F(t)-measurable

nonanticipating simple functionals, such that these ∆n(t) are constant on half-open
subintervals[

jt

n
,

(j + 1)t
n

[
( [0, t] with j ∈ {0, 1, ..., n− 1},

and such that this sequence (∆n(t))n∈N≥1
is defined as

(3.5) ∆n(τ) = ∆
(
bnτ
t
c
)

with b·c the floor entier,

while satisfying

lim
n→∞

E
[∫ t

0
|∆(τ)−∆n(τ)|2dτ

]
= 0,

which is L2-convergence. Namely, from square integrability 3.4 it can be shown
that there exists a sequence of processes (∆′n(t))n∈N≥1

,

∆′n(t) := min
{
n,max{−n,∆(t)}

}
,

that are nonanticipating, F(t)-measurable, and bounded, and L2-converge to ∆n(t):

lim
n→∞

E
[∫ t

0
|∆n(τ)−∆′n(τ)dτ |2

]
= 0,

by dominated convergence, These ∆′n(t) may be L2 approached by continuous
nonanticipating, F(t)-measurable, bounded ∆′′n(t) by bounded convergence, which
are in turn L2-approached by ∆n(t) in 3.5, again by bounded convergence.

Hence let ∆n(t) be such a sequence; it can be shown that∫ t

0
∆n(τ)dW (τ) :=

n−1∑
j=0

∆n

(
j

n
t

)(
W

(
j + 1
n

t

)
−W

(
j

n
t

))
has a limit in L2, as n → ∞, that is independent of the choice of ∆n. Therefore,
the square integrability condition 3.4 allows defining the unique Itô integral as

I(t) =
∫ t

0
∆(τ)dW (τ) := lim

n→∞

∫ t

0
∆n(τ)dW (τ)(3.6)

= lim
n→∞

n−1∑
j=0

∆n

(
j

n
t

)(
W

(
j + 1
n

t

)
−W

(
j

n
t

))
.
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The square-integrability requirement 3.4 is assumed throughout this paper and ap-
propriate for all practical applications.

The following proposition identifies a property of Itô integrals that is fundamental
to the risk-neutral framework in mathematical finance.

3.4.2 Proposition. Itô integrals are martingales.

Proof. This is an illustration; the proof boils down to splitting the expectation

E [I(t)|F(s)] =E
[∫ t

0
∆(τ)dW (τ)

∣∣∣∣F(s)
]

=E

 lim
n→∞

n−1∑
j=0

∆n

(
j

n
t

)(
W

(
j + 1
n

t

)
−W

(
j

n
t

))∣∣∣∣∣∣F(s)


into terms that are F(s)-measurable and terms that are not. The part that is F(s)-
measurable (with τ ≤ s) is nonrandom and has value I(s). The part that is not
F(s)-measurable is independent of F(s) and breaks down in terms

E
[
∆n

(
j

n
t

)(
W

(
j + 1
n

t

)
−W

(
j

n
t

))∣∣∣∣F(s)
]

where j

n
t > s

= E
[
∆n

(
j

n
t

)]
E
[(
W

(
j + 1
n

t

)
−W

(
j

n
t

))]
,

which are zero by the properties of Brownian motion. Thus E [I(t)|F(s)] = I(s),
which says that Itô processes are martingales.

Being based on Brownian motion, Itô integrals aggregate nonzero quadratic vari-
ation themselves. As the next proposition shows, ∆(t) amplifies the Brownian
motion’s quadratic variation [W,W ] (t) = t by its square in I(t).

3.4.3 Proposition. The quadratic variation of the Itô integral I(t) of 3.6 is

[I, I] (t) =
∫ t

0
(∆(τ))2

dτ

almost surely.

Proof. This proof is restricted to nonanticipating simple processes ∆n(t) as in 3.5,
but the result holds for all Itô-integrable stochastic processes.

Because ∆n is constant on
[
j
n t,

j+1
n t
[
, the integral I(t) is a sum [Shr10, section

4.2.1] ∫ t

0
∆n(τ)dW (τ) =

n−1∑
j=0

∆n

(
j

n
t

)(
W

(
j + 1
n

t

)
−W

(
j

n
t

))
.
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Take a partition Π := {s0 = j
n t, s1, ..., sm = j+1

n t} (
[
j
n t,

j+1
n t
]
as in 3.2, then

the quadratic variation aggregated on
[
j
n t,

j+1
n t
[
, which is equal that on

[
j
n t,

j+1
n t
]

(namely j+1
n t− j

n t = 1
n t), is

lim
‖Π‖→0

m−1∑
i=0

(
∆n

(
j

n
t

)(
W (si+1)−W (si)

))2

=
(

∆n

(
j

n
t

))2
lim
‖Π‖→0

m−1∑
i=0

(
W (si+1)−W (si)

)2
=
(

∆n

(
j

n
t

))2(
[W,W ]

(
j + 1
n

t

)
− [W,W ]

(
j

n
t

))
=
(

∆n

(
j

n
t

))2(
j + 1
n

t− j

n
t

)
almost surely

=
∫ j+1

n

j
n

(∆n(τ))2
dτ almost surely.

As quadratic variation is additive with respect to subintervals of [0, T ], it follows
that the quadratic variation of I(t) on [0, t] is the sum

[I, I] (t) =
n−1∑
j=0

∫ j+1
n

j
n

(∆n(τ))2
dτ =

∫ t

0
(∆n(τ))2

dτ almost surely

which proves the proposition.

In order to perform calculus with respect to the non-differentiable Brownian motion,
Itô (and independently of him, Wolfgang Doeblin) devised an integral equation for
a certain class of functions of W (t).

3.4.4 Theorem (Itô-Doeblin formula for Brownian motion). Let f : R≥0×R→ R
be a function such that the partial derivatives

• D1 [f ],

• D2 [f ], and

• D2
2 [f ]

exist and are continuous. With t ∈ R≥0 it holds that

f (t,W (t)) =f (0,W (0)) +
∫ t

0
D1 [f ] (τ,W (τ)) dτ

+
∫ t

0
D2 [f ] (τ,W (τ)) dW (τ) + 1

2

∫ t

0
D2

2 [f ] (τ,W (τ)) dτ.

Proof. To prove the equality, consider again a partition

Π = {t0 = 0, t1, ..., tn = t} ( [0, t],∀j ∈ {0, 1..., n− 1} : tj < tj+1.
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It will be shown that the sum of the discrete increments of f , expanded using
Taylor’s theorem for two variables, converges to the proposed expression.

Consider the Taylor expansion

f (tj+1,W (tj+1)) =f (tj ,W (tj))
+ D1[f ] (tj ,W (tj)) · (tj+1 − tj)
+ D2[f ] (tj ,W (tj)) · (W (tj+1)−W (tj))

+ 1
2D2

2[f ] (tj ,W (tj)) · (W (tj+1)−W (tj))2

+ D1,2[f ] (tj ,W (tj)) · (W (tj+1)−W (tj)) · (tj+1 − tj)

+ 1
2D2

1[f ] (tj ,W (tj)) · (tj+1 − tj)2

+ higher order terms.

By summing the equality for all j ∈ {0, 1..., n − 1} and canceling on both sides
the terms f (tj ,W (tj)) for j ∈ {1, 2, ..., n−2}, the lefthandside equals f (t,W (t)),
while the first term on the righthandside produces f (0,W (0)). The other terms on
the righthandside yield summations which will be shown to equal certain integrals
as ‖Π‖ → 0.

For the sum of the first appearing partial derivative, it holds in the limit that

lim
‖Π‖→0

n−1∑
j=0

D1[f ] (tj ,W (tj)) · (tj+1 − tj) =
∫ t

0
D1[f ] (τ,W (τ)) dλ(τ),

a Lebesgue integral by the measure tj+1 − tj . The second appearing partial is
measured by W (tj+1)−W (tj) and as such yields an Itô integral by

lim
‖Π‖→0

n−1∑
j=0

D2[f ] (tj ,W (tj)) · (W (tj+1)−W (tj))

=
∫ t

0
D2[f ] (τ,W (τ)) dW (τ).

Notice that the third partial 1
2D2

2[f ] (tj ,W (tj)) · (W (tj+1)−W (tj))2 resembles
quadratic variation summands because of the (W (tj+1)−W (tj))2 term. In fact,

lim
‖Π‖→0

n−1∑
j=0

1
2D2

2[f ] (tj ,W (tj)) · (W (tj+1)−W (tj))2

=
∫ t

0
D2

2[f [ (τ,W (τ)) d[W,W ](τ) = 1
2

∫ t

0
D2

2[f ] (τ,W (τ)) dτ

because as ‖Π‖ → ∞, the infinitesimal change in quadratic variation d[W,W ](τ)
is the infinitesimal change in its value τ , shown in 3.2.1. For a more elaborate
argument, see for example [Shr10, remark 3.4.4].

The fourth and fifth partial, as well as all partials of higher order, contain at least
one difference factor (tj+1 − tj) or (W (tj+1)−W (tj)) twice. The limits of their
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sums is therefore bounded by the maximum of that difference factor times some
finite integral without that difference factor. For instance,

n−1∑
j=0

1
2D2

1[f ] (tj ,W (tj)) · (tj+1 − tj)2

≤ max
j∈{0,1,...,n−1}

{tj+1 − tj}
n−1∑
j=0

1
2D2

1[f ] (tj ,W (tj)) · (tj+1 − tj)

and this expression converges as ‖Π‖ → 0 to

0 ·
∫ t

0
D2

1[f ] (τ,W (τ)) dτ = 0.

SinceW is continuous, similarly maxj∈{0,1,...,n−1}{| (W (tj+1)−W (tj)) |} → 0, so
likewise all other remaining terms in the Taylor expansion are 0 in the limit.

Summing f (0,W (0)) and the obtained integrals yields the proposed equation.

In general an Itô process X(t) is understood to be a stochastic process

(3.7) X(t) = X(0) +
∫ t

0
Ψ(τ)dW (τ) +

∫ t

0
Θ(τ)dτ

such that X(0) is nonrandom and Ψ(t) and Θ(t) are adapted to F(t). Notice it
consists of an Itô and a Lebesgue integral. It can be shown by continuity arguments
[Shr10, lemma 4.4.4] that an Itô process attains all its quadratic variation from its
Itô integral; therefore from proposition 3.4.3 it follows that

(3.8) [X,X] (t) =
[∫ t

0
Ψ(τ)dW (τ),

∫ t

0
Ψ(τ)dW (τ)

]
(t) =

∫ t

0
(Ψ(τ))2

dτ.

Generalizing as well to integration along the Itô process X(t), with Γ(t) adapted to
F(t), the integral with respect to X(t) is defined as∫ t

0
Γ(τ)dX(τ) :=

∫ t

0
Γ(τ)Ψ(τ)dW (τ) +

∫ τ

0
Γ(τ)Θ(τ)dτ,

the sum of an Itô and a Lebesgue integral. This leads to a generalization of theorem
3.4.4 as follows.

3.4.5 Theorem (Itô-Doeblin formula for Itô process). Let (X(t))t∈[0,T ] be an Itô-
process, and let f : R≥0 × R→ R be a function such that the partial derivatives

• D1 [f ],

• D2 [f ], and

• D2
2 [f ]
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exist and are continuous. With t ∈ R≥0 it holds that

f (t,X(t)) =f (0,W (0)) +
∫ t

0
D1 [f ] (τ,X(τ)) dτ

+
∫ t

0
D2 [f ] (τ,X(τ)) Ψ(τ)dW (τ)

+
∫ t

0
D2[f ] (τ,X(τ)) Θ(τ)dt

+ 1
2

∫ t

0
D2

2 [f ] (τ,X(τ)) (Ψ(τ))2
dτ.

Proof. The procedure is similar to that of theorem 3.4.4.
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Chapter 4

Option pricing

In practical finance, the market consists of agents trading in assets: something
possessing economic value. The valuation of these assets through time is determined
largely by classic offer-and-demand, and proves to be unpredictable in such a way
that agents cannot trust that their assets retain some value. For example, if one
agent’s asset is money and she regularly requires some product to facilitate her
economic production, she cannot trust this product to maintain the same price
relative to her money through time. The rise in value of such a product is a
significant financial risk for her. In order to hedge such risks, there exists demand
for financial products that counteract in some way a negative turn of events. One
such financial product is an option. An option grants its purchaser the right to buy
an asset at some time in the future, for some fixed price called the strike price.
Intuitively, should the value of the corresponding asset rise through time, since the
strike price of the option remains constant, the value of the option increases. If
the value of the asset falls, so does the value of the option, until the asset drops
below the strike price: then the option is worth nothing. The agent who requires
the regular purchase of some products may also purchase an option on this product:
the value of the option correlates negatively with the value of her money relative to
the product, and she is said to have hedged her position.

Options exist on the financial market and are typically issued by financial institutions.
The two problems that these institutions face are

1. at what price to sell the option, and

2. how to invest the money from selling the option in order to deliver the asset
if the purchaser claims her right.

To ensure option-selling is reasonable business, the value of the option must be such
that the issuer makes no loss if she must deliver the asset. It can furthermore be
shown [Shr04] that the issuer must not be able to make a sure profit in this business.
The latter condition is called a no-arbitrage requirement; if it is violated, agents
are able to make sure profits without initial capital, which would incapacitate the
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economic system. These conditions determine a unique but random value that the
issuer must possess from investing the unknown initial option price. The randomness
arises from the uncertain path that the value of the asset will follow through time.

In this chapter, a unique price and investment strategy for the issuer are derived,
echoing the methods of Robert C. Merton [Mer73] and in particular the derivation of
Fischer Black and Myron Scholes [BS73], part of their joint curriculum that earned
Merton and Scholes the 1997 Nobel Prize in Economics (after Black had passed
away in 1995) [Nob97]. The analysis assumes and considers

• one asset, with constant rate of return α ∈ R>0, continuously divisible, mean-
ing the asset can be divided and traded in real positive (R>0) quantities,

• one other asset, the numeraire (money); continuously divisible, measuring all
value, with constant continuously compounding interest rate r ∈ R>0,

• the assumption α > r as motivation to invest in the asset,

• one option to buy one asset at fixed maturity time T ∈ R>0 at fixed strike
price K ∈ R>0,

• t ∈ [0, T ] time,

• S(t), the asset value through time, is a geometric Brownian motion; see 4.2,

• V (t, S(t)), the option depending on time and on the asset value, such that
V (T, S(T )) = (S(T )−K)+ = max{S(T )−K, 0},

• ∆(t), the position (investment) of the issuer in the asset through time

• X(t), the portfolio value of the issuer through time, consists of investment in
the asset and in the numeraire,

• W (t), a Brownian motion, and

• S(t), V (t), ∆(t), X(t), and W (t) adapted to filtration F(t), the market
information and history at time t.

4.1 Derivation of Black-Scholes-Merton equation

This section relies heavily on the Itô calculus developed in section 3.4. It is com-
mon practice to use differential notation for the expressions derived there, as they
are much shorter and are argued to provide ‘intuition’ about how the stochastic
processes change. In this paper, instead it was chosen to rely on full integral no-
tation, as being mathematically formal, and providing an intuition of its own: the
integrals from 0 to t represent aggregated value of the integrand as measured by
their integrator.
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A unique price and investment strategy satisfying all requirements will be derived
from the assumption that through time, the asset value follows a geometric Brow-
nian motion, given in integral notation by

(4.1) S(t) = S(0) + σ

∫ t

0
S(τ)dW (τ) + α

∫ t

0
S(τ)dτ.

This assumption expresses that the asset value starts at some initial level S(0),
starts continuously compounding value on itself at rate r, and either rises or falls
proportionally to a Brownian motion W (t) adapted to F(t), amplified by constant
volatility σ ∈ R>0.

Expression 4.1 is solved by the geometric Brownian motion

(4.2) S(t) = S(0)eσW (t)+(α− 1
2σ

2)t.

To see how, consider S : R≥0 × R→ R given by

S(x, y) = S(0, 0)eσy+(α− 1
2σ

2)x

and notice the partial derivatives D1[S], D2[S], and D2
2[S] exist and are continuous.

Therefore it follows from applying the Itô-Doeblin formula from theorem 3.4.4 that

S (t,W (t)) =S (0,W (0)) +
∫ t

0
D1 [S] (τ,W (τ)) dτ

+
∫ t

0
D2 [S] (τ,W (τ)) dW (τ) + 1

2

∫ t

0
D2

2 [S] (τ,W (τ)) dτ

=S (0,W (0)) +
(
α− 1

2σ
2
)∫ t

0
S (τ,W (τ)) dτ

+ σ

∫ t

0
S (τ,W (τ)) dW (τ) + 1

2σ
2
∫ t

0
S (τ,W (τ)) dτ,

thus by substituting t for x and W (t) for y in S(x, y) and the cancellation of the
terms multiplied by 1

2σ
2, the integral expression 4.1 is obtained, showing geometric

Brownian motion 4.2 indeed solves 4.2.

Note S(t) inherits the Markov property from W (t) 3.2.3. Notice furthermore that
S(x, y) is convex in y, so by Jensen’s inequality it follows that

E [S (t,W (t))] ≥ S (t,E[W (t)]) = S(0, 0)e(α− 1
2σ

2)t

and the actual expectation is in fact E[S(t)] = S(0)eαt. This illustrates that
geometric Brownian motion is not a martingale. Its distribution is called log-normal
because the natural logarithm of S(t) follows a normal distribution. The expected
value may be interpreted as the expected financial gain over time from investing
in one share of the asset. Also, S(t) is strictly positive. These properties bring
geometric Brownian motion in accordance with several characteristics of real-world
asset value behavior. For example, Fama found strong evidence that the (past) path
of an asset’s value cannot be used to predict the future value of the asset [Fam65]. It
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is however in contrast with reality that α and σ are held fixed, and, additionally, real
stock behavior shows higher probability of sudden large value changes (commonly
called fat tails) than under log-normal distribution.

The issuer’s position in the asset ∆(t) is a stochastic process adapted to F(t). In the
upcoming discussion, an expression for ∆(t) will be derived that is free of the ‘risk’
of the volatile Brownian motion W (t) and prescribes the option’s issuers amount
of stock in the asset to hold at time t, depending only on the asset value S(t),
to perfectly hedge her obligation to the option purchaser at any time. The issuer
distributes the portfolio value (her wealth) X(t) at any time t over her investment
∆(t) and her position in the numeraire X(t)−∆(t). In particular, she does not add
value to her portfolio; she works with her initial capital X(0). Her portfolio process
is therefore expressed as

X(t) = X(0)+
∫ t

0
σ∆(τ)S(τ)dW (τ)+

∫ t

0

(
(α−r)∆(τ)S(τ)+rX(τ)

)
dτ,

an Itô process. The Itô integral is subject to the instantaneous changes of the
Brownian motion amplified by its volatility. The regular integral contains the rates
of return on both her positions.

Since the value of the portfolio is expressed in units of the numeraire, it is important
to account for the effect of discounting, a consequence of the numeraire market
rate of return r. More concretely, the value of the numeraire is time dependent.
Specifically, assuming continuous discounting, the value

v ∈ R>0 at time tj ∈ [0, T ]

is

e−rtj · v at time t = 0;

see section 2.3. Define therefore the generic discounting function

(4.3) ϕ(x, y) := e−rxy

with continuous partial derivatives

D1[ϕ](x, y) = −re−rxy D2[ϕ](x, y) = e−rx D2
2[ϕ](x, y) = 0,

notice ϕ (0, X(0)) = X(0), take

Ψ(t) = σ∆(t)S(t) and Θ(t) = (α− r)∆(t)S(t) + rX(t)

and consider the Itô-Doeblin expansion of theorem 3.4.5 of the discounted portfolio

e−rtX(t) =ϕ (t,X(t))

=ϕ (0, X(0))−
∫ t

0
re−rτX(τ)dτ +

∫ t

0
e−rτσ∆(τ)S(τ)dW (τ)

+
∫ t

0
e−rτ ((α− r)∆(τ)S(τ) + rX(τ)) dτ

=X(0) +
∫ t

0
e−rτσ∆(τ)S(τ)dW (τ)

+
∫ t

0
e−rτ ((α− r)∆(τ)S(τ)) dτ.

27



Notice that the discounted portfolio value e−rtX(t) does not grow as a result the
numeraire market’s interest rate r.

The option value V (t, S(t)) depends on t and the asset value S(t), and is itself an
Itô process. Taking

Ψ(t) = σS(t) and Θ(t) = αS(t),

then from the the general Itô-Doeblin formula it follows that

V (t, S(t)) =V (0, S(0)) +
∫ t

0
D1[V ] (τ, S(τ)) dτ

+
∫ t

0
D2[V ] (τ, S(τ))σS(τ)dW (τ)

+
∫ t

0
D2[V ] (τ, S(τ))αS(τ)dτ

+ 1
2

∫ t

0
D2

2[V ] (τ, S(τ))σ2 (S(τ))2
dτ

=V (0, S(0)) +
∫ t

0
D2[V ] (τ, S(τ))σS(τ)dW (τ)

+
∫ t

0
D1[V ] (τ, S(τ)) + D2[V ] (τ, S(τ))αS(τ)

+ 1
2D2

2[V ] (τ, S(τ))σ2 (S(τ))2
dτ.

From this expression the Itô-Doeblin expansion of the discounted option value
e−rtV (t, S(t)) = ϕ (t, V (t, S(t))) from 4.3 may be computed. Taking

Ψ(t) =D2[V ] (τ, S(τ))σS(τ) and
Θ(t) =D1[V ] (τ, S(τ)) + D2[V ] (τ, S(τ))αS(τ)

+ 1
2D2

2[V ] (τ, S(τ))σ2 (S(τ))2
,

the general Itô-Doeblin formula from 3.4.5 yields

e−rtV (t, S(t)) =ϕ (t, V (t, S(t)))

=ϕ (0, V (0, S(0)))−
∫ t

0
re−rτV (τ, S(τ)) dτ

+
∫ t

0
e−rτΨ(τ)dW (τ) +

∫ t

0
e−rτΘ(τ)dτ + 0

=V (0, S(0)) +
∫ t

0
e−rτD2[V ] (τ, S(τ))σS(τ)dW (τ)

+
∫ t

0
e−rτ

(
− rV (τ, S(τ)) + D1[V ] (τ, S(τ))

+ D2[V ] (τ, S(τ))αS(τ) + 1
2D2

2[V ] (τ, S(τ))σ2 (S(τ))2
)
dτ.
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Thus are obtained expressions for both the discounted portfolio value and the dis-
counted asset value in terms of initial conditions and regular and Itô integrals. Since
the portfolio hedges the short (outstanding) option, it is required that

(4.4) ∀t ∈ [0, T ] : e−rtX(t) = e−rtV (t, S(t)) .

In particular, the initial values must agree since V (0, S(0)) provides the issuer with
the initial capital to set up the hedge X (0), while the values at maturity must
agree so the issuer can fulfill his obligation (if applicable) and to prevent arbitrage.
Evaluating 4.4 with the expanded expressions obtained above, using initial condition
X (0) = V (0, S(0)) to cancel those terms, an equation arises that consists of a
regular and an Itô integral on both sides. In the expansion of an Itô process, only
the Itô integrals almost surely have nonzero quadratic variation, as mentioned in
section 3.4. Therefore the Itô integrals are equal, yielding∫ t

0
e−rτσ∆(τ)S(τ)dW (τ) =

∫ t

0
e−rτD2[V ] (τ, S(τ))σS(τ)dW (τ)

almost surely. As 4.4 holds for all t, this implies that

(4.5) ∆(t) = D2[V ] (t, S(t)) almost surely.

As such, at time t the derivative of V with respect to the asset value provides the
position ∆(t) in the asset that the issuer must take to hedge the short option. In
finance, equation 4.5 is referred to as the delta-hedging rule.

Equation of the Itô integrals implies the regular integrals are equal, too. Again by
4.4 this implies the integrands are equal, thus

e−rt(α− r)∆(t)S(t) = e−rt
(
− rV (t, S(t))

+D1[V ] (t, S(t)) + D2[V ] (t, S(t))αS(t) + 1
2D2

2[V ] (t, S(t))σ2 (S(t))2
)

almost surely. Dividing by e−rt, substituting ∆(t) with D2[V ] (t, S(t)) by 4.5, and
canceling terms D2[V ] (t, S(t))αS(t) results in

−rD2[V ] (t, S(t))S(t) = −rV (t, S(t))

+D1[V ] (t, S(t)) + 1
2D2

2[V ] (t, S(t))σ2 (S(t))2 almost surely.

Replacing the process S(t) with y ∈ R>0 representing arbitrary asset value yields
the partial differential equation

(4.6) rV (t, y) = D1[V ] (t, y) + ryD2[V ] (t, y) + 1
2σ

2y2D2
2[V ] (t, y) almost surely,

typically referred to as the Black-Scholes-Merton equation. A boundary condition
is the requirement that the option value, hence the portfolio value, satisfies

V (T, y) = (y −K)+

for arbitrary asset value y. The two other boundary conditions are V (t, 0) = 0 and
y →∞⇒ V (t, y)→ y, saying the option value converges to the asset value as the
latter approaches infinity.
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Black and Scholes recognized [BS73] the partial differential equation 4.6 as the heat-
transfer equation in physics, and refer to the textbook solution by Ruel V. Churchill
[Chu63, p.155]. The equation is a Cauchy-Euler equation and may be solved by a
change of variables into a diffusion equation. In this paper, instead an alternative
approach typical to mathematical finance is chosen, using a transformation to a risk-
neutral probability measure that renders the option and portfolio value a martingale.

Notice that no terms related to the Brownian motion W (t) are present in 4.6. This
may be interpreted as having successfully eliminated risk from the hedging strategy
∆(t) = D2[V ] (t, S(t)) in 4.5.

4.2 Solution to the option value formula

The following proposition is a simplification of Girsanov’s theorem in one dimension
[Gir60]. The full theorem considers volatility, rate of return on asset, and rate
of return on the numeraire as stochastic processes adapted to F(t). This paper
considers constant σ, α, and r exclusively, so the proposition has been adjusted
accordingly. The proof of the full theorem is not substantially different.

Take

Z(t) := e−
α−r
σ W (t)− 1

2 (α−r
σ )2

t and Z := Z(T )

and define

W̃ (t) := W (t) + α− r
σ

t.

Notice the square integrability requirement E
[∫ T

0
(
α−r
σ

)2 (Z(τ))2
dτ
]
<∞ is sat-

isfied.

4.2.1 Proposition. The expected value E [Z] = 1, therefore it defines an equivalent
probability measure P̃ as in 2.1.2. Under this measure, W̃ (t) is a Brownian motion.

Proof. By Lévy’s theorem 3.2.2, a stochastic process with continuous paths, start-
ing at zero, with quadratic variation t at time t, that is a martingale, is a Brownian
motion. Clearly W̃ (0) = 0 and W̃ (t) is continuous because W (t) and α−r

σ t are.
The quadratic variation is equal to [W,W ] (t) = t because α−r

σ t is differentiable and
introduces no quadratic variation. To see that W̃ (t) is a martingale, first consider
the function

ϕ(x, y) := e−
α−r
σ y− 1

2 (α−r
σ )2

x
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and the Itô-Doeblin expansion for Brownian motion 3.4.4

Z(t) =ϕ (t,W (t))

=ϕ (0,W (0)) +
∫ t

0
−1

2

(
α− r
σ

)2
ϕ (τ,W (τ)) dτ

+
∫ t

0
−α− r

σ
ϕ (τ,W (τ)) dW (τ)

+ 1
2

∫ t

0

(
α− r
σ

)2
ϕ (τ,W (τ)) dτ

=Z(0)−
∫ t

0

α− r
σ

ϕ (τ,W (τ)) dW (τ)

which shows Z(t) is a martingale because Itô integrals are by proposition 3.4.2.

Using Itô’s product rule, the process W̃ (t)Z(t) can also be expanded into the sum
of its initial value and an Itô integral, and is likewise a martingale.

Since Z(t) is a martingale, it follows that

E[Z] = E [Z(T )] = Z(0) = 1

which justifies the probability measure P̃ based on Z. Furthermore

Z(t) = E [Z(T )|F(t)] = E [Z|F(t)]

so Z(t) is a Radon-Nikodým derivative process [Shr10, 5.2]. Therefore, using Baye’s
rule and the martingale property of W̃ (t)Z(t), for s ∈ [0, t],

Ẽ
[
W̃ (t)

∣∣F(s)
]

= 1
Z(s)E

[
W̃ (t)Z(t)

∣∣F(s)
]

= W̃ (s)Z(s)
Z(s) = W̃ (s),

proving W̃ (t) is also a martingale. As such, W̃ (t) fulfills all conditions of Levy’s
theorem 3.2.2, and hence W̃ (t) is a Brownian motion under the probability measure
P̃ of 2.1.2.

Since W̃ (t) is a Brownian motion, the increments W̃ (t)− W̃ (s) with s ∈ [0, t] are
normally distributed under P̃ , with variance t− s. In particular,

(4.7) w := −W̃ (t)− W̃ (s)√
t− s

follows standard normal distribution under P̃ . This is of particular interest in the
following derivation of the Black-Scholes-Merton option valuation formula.

Using methods of stochastic calculus developed earlier, it can be shown [Shr10,
section 5.2.3] that the Itô expansion of the discounted portfolio process can be
rewritten using W̃ (t) as

(4.8) e−rtX(t) = X(0) +
∫ t

0
e−rτσ∆(τ)S(τ)dW̃ (τ)
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and has no regular integrals. Under P̃ , the Itô integral is a martingale, and so is
the discounted portfolio process. This means that X(t) satisfies the equality

Ẽ
[
e−rTX(T )

∣∣F(t)
]

= e−rtX(t)

and equality 4.4 and the Markov property of W (t) imply

e−rtV (t, S(t)) = Ẽ
[
e−rTV (T, S(T ))

∣∣F(t)
]
.

Since e−rt is nonrandom, the equation may be rewritten as

(4.9) V (t, S(t)) = Ẽ
[
e−r(T−t)V (T, S(T ))

∣∣∣F(t)
]
.

An exact solution for V (t) in terms of σ, α, r, K, and T will be derived from 4.9
using the fact that w in 4.7 is distributed standard normally under P̃ , hence in the
risk-neutral expectation.

The asset value process S(t) from 4.2 can be rewritten in terms of W̃ (t) by

S(t) =S(0)eσW (t)+(α− 1
2σ

2)t

=S(0)eσW (t)+((α−r)+(r− 1
2σ

2))t

=S(0)eσ(W (t)+α−r
σ t)+(r− 1

2σ
2)t

yielding

(4.10) S(t) = S(0)eσW̃ (t)+(r− 1
2σ

2)t.

In particular, the final asset value S(T ) can be expressed as

S(T ) =S(0)eσ(W̃ (T )−W̃ (t)+W̃ (t))+(r− 1
2σ

2)(T−t+t)

=S(0)eσW (t)+(r− 1
2σ

2)teσ(W̃ (T )−W̃ (t))+(r− 1
2σ

2)(T−t)

=S(t)eσ(W̃ (T )−W̃ (t))+(r− 1
2σ

2)(T−t)

which may be rewritten using w defined in 4.7 as

S(T ) = S(t)e−σw
√
T−t+(r− 1

2σ
2)(T−t).

Recall that the final value of the option is V (T, S(T )) = (S(T )−K)+, so substi-
tuting

V (T, S(T )) =
(
S(t)e−σw

√
T−t+(r− 1

2σ
2)(T−t) −K

)+

into 4.9 yields the equation

V (t, S(t)) = Ẽ
[
e−r(T−t)

(
S(t)e−σw

√
T−t+(r− 1

2σ
2)(T−t) −K

)+
∣∣∣∣F(t)

]
.

Although unwieldy at first sight, the conditioning F(t) implies S(t) is nonrandom
and may be regarded a constant. Therefore it may be replaced by y ∈ R>0 to rep-
resent arbitrary asset value. Furthermore, as w follow standard normal distribution
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under P̃ , the expectation is actually a regular integral over the real line with respect
to the standard normal distribution function. Symbolically,

V (t, y) =
∫ ∞
−∞

e−r(T−t)
(
ye−σu

√
T−t+(r− 1

2σ
2)(T−t) −K

)+ 1√
2π
e−

1
2u

2
du.

The option value at maturity V (T, y) is positive if and only if

ye−σu
√
T−t+(r− 1

2σ
2)(T−t) > K

⇔ −σu
√
T − t > ln

(
K

y

)
−
(
r − 1

2σ
2
)

(T − t)

⇔ u < d := 1
σ
√
T − t

(
ln
( y
K

)
+
(
r − 1

2σ
2
)

(T − t)
)

else it is zero. Therefore only those values u < d need be considered, and

V (t, y) =
∫ d

−∞
e−r(T−t)

(
ye−σu

√
T−t+(r− 1

2σ
2)(T−t) −K

) 1√
2π
e−

1
2u

2
du

=
∫ d

−∞
e−r(T−t)ye−σu

√
T−t+(r− 1

2σ
2)(T−t) 1√

2π
e−

1
2u

2
du

−
∫ d

−∞
e−r(T−t)K

1√
2π
e−

1
2u

2
du

=y
∫ d

−∞

1√
2π
e−

1
2u

2−r(T−t)−σu
√
T−t+(r− 1

2σ
2)(T−t)du

− e−r(T−t)K
∫ d

−∞

1√
2π
e−

1
2u

2
du

=y
∫ d

−∞

1√
2π
e−

(u+σ
√
T−t)2

2 du− e−r(T−t)KΦ(d),

where Φ denotes the cumulative standard normal distribution function 2.2. The
remaining integral is the cumulative distribution up until d of a random variable
distributed normally with mean −σ

√
T − t and variance 1, hence with d := d +

σ
√
T − t it is equal to Φ(d). With these substitutions, the Black-Scholes-Merton

formula is

V (t, y) = yΦ(d)− e−r(T−t)KΦ(d)

providing, under the assumptions of chapter 4, for each t ∈ [0, T ] and any asset
value y ∈ R>0 the unique no-arbitrage value of a European call option with strike
price K, for fixed volatility σ, asset rate of return α, and numeraire rate of return
r. The fair price at which the issuer must sell the option to facilitate his hedge and
prevent arbitrage on his side is V (0, S(0)) and his perfect hedging strategy through
time is dictated by the delta-hedging rule 4.5 ∆(t) = D2[V ] (t, S(t)).
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