Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorHenriques, A.G.
dc.contributor.authorVromen, L.J.D.
dc.date.accessioned2013-09-21T17:00:41Z
dc.date.available2013-09-21
dc.date.available2013-09-21T17:00:41Z
dc.date.issued2013
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/14976
dc.description.abstractThe group $Diff(S^1)$ of smooth orientation preserving diffeomorphisms of the circle has a natural action on the Hilbert spaces $L^2(S^1)$ and $H^{1/2}(S^1)$, preserving the canonical orthogonal, respectively symplectic, structures on these spaces. Applying a famous criterion of Shale and Stinespring, this yields a projective representation of $Diff(S^1)$ on the associated fermionic, respectively bosonic, Fock space. We prove this criterion in an abstract setting, treating the fermionic and bosonic cases analoguously. We investigate to which extent the smoothness condition on the circle diffeomorphisms can be relaxed.
dc.description.sponsorshipUtrecht University
dc.format.extent879853 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleCircle diffeomorphisms acting on fermionic and bosonic Fock space
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsboson, fermion, Fock space, Shale-Stinespring, implementation, exponential, creator, annihilator, spin, metaplectic
dc.subject.courseuuMathematical Sciences


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record