View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        Seiberg-Witten theory for symplectic manifolds

        Thumbnail
        View/Open
        thesis.pdf (841.1Kb)
        Publication date
        2013
        Author
        Klaasse, R.L.
        Metadata
        Show full item record
        Summary
        In this thesis we give an introduction to Seiberg-Witten gauge theory used to study compact oriented four-dimensional manifolds X. Seiberg-Witten theory uses a Spin c structure to create two vector bundles over X called the spinor bundle and determinant line bundle. One then considers the set of solutions to the Seiberg-Witten equations, which are expressed in terms of a section of the spinor bundle and a Dirac operator formed out of a connection on the determinant line bundle. After taking the quotient by an action of a U(1)-gauge group, one constructs an invariant by integrating cohomology classes over the resulting moduli space. In this thesis we show these Seiberg-Witten invariants can be used to find obstructions to the existence of a symplectic structure on X.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/14953
        Collections
        • Theses
        Utrecht university logo