View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        A Quantitative Comparison of Semantic Web Page Segmentation Algorithms

        Thumbnail
        View/Open
        masterthesis3.pdf (565.1Kb)
        Publication date
        2013
        Author
        Kreuzer, R.A.
        Metadata
        Show full item record
        Summary
        This thesis explores the effectiveness of different semantic Web page segmentation algorithms on modern websites. We compare the BlockFusion, PageSegmenter, VIPS and the novel WebTerrain algorithm, which was developed as part of this thesis, to each other. We introduce a new testing framework that allows to selectively run different algorithms on different datasets and that subsequently automatically compares the generated results to the ground truth. We used it to run each algorithm in eight different configurations where we varied datasets, evaluation metric and the type of the input HTML documents for a total of 32 combinations. We found that all algorithms performed better on random pages on average than on popular pages. The reason for this is most likely the higher complexity of popular pages. Furthermore the results are better when running the algorithms on the HTML obtained from the DOM than on the plain HTML. Of the different algorithms BlockFusion has the lowest F-score on average and WebTerrain the highest. Overall there is still room for improvement as we find the best average F-score to be 0.49.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/14898
        Collections
        • Theses
        Utrecht university logo