View Item 
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        •   Utrecht University Student Theses Repository Home
        • UU Theses Repository
        • Theses
        • View Item
        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UU Student Theses RepositoryBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

        Numerical study of the trapped and extended Bose-Hubbard models

        Thumbnail
        View/Open
        p_at_vw.pdf (2.280Mb)
        Publication date
        2013
        Author
        Comparin, T.
        Metadata
        Show full item record
        Summary
        The Bose-Hubbard model describes the physics of a system of bosonic ultracold atoms in an optical lattice, in which a phase transition is present between a superfluid phase and a Mott insulator one. The exact solution of this Hamiltonian is only feasible to find the ground-state of small systems, while other techniques (as mean-field schemes or quantum Monte Carlo) are necessary to study systems of larger size. As a first application, we study the trapped model - relevant for the comparison with current experiments - through an inhomogeneous mean-field scheme. We describe some signatures of the phase crossover between superfluid and Mott insulator. In particular, the visibility of the quasimomentum distribution shows some kinks as a function of the lattice depth; we describe these features and we link them with the ones observed in other works in the literature. As a second application, we use quantum Monte Carlo techniques to study the one-dimensional Bose-Hubbard model with long-range interactions and we focus on the appearance of the Haldane insulating phase, distinguishable from the Mott one through the presence of non-local hidden order. Non-local correlation functions are also used to describe the difference between the superfluid phase and the Mott insulator one.
        URI
        https://studenttheses.uu.nl/handle/20.500.12932/14087
        Collections
        • Theses
        Utrecht university logo