Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorKool, Dr. M.
dc.contributor.authorSilfhout, R.J.M.
dc.date.accessioned2021-09-06T18:00:14Z
dc.date.available2021-09-06T18:00:14Z
dc.date.issued2019
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/778
dc.description.abstractAutomated Geometry Theorem Proving (AGTP) is an algebraic approach to (dis)proving geometric statements in such a way that it can be (mostly) fully automated. The main idea is to translate the given geometric properties to polynomials, where the variables are the coordinates of the given points, and look at the corresponding variety. One way (a first approach) to see if a certain property holds, is to see if its corresponding polynomial is contained in the vanishing ideal of the initial variety. A more complete approach is Wu's Method, which relies on the theorem behind ascending chains and pseudo-remainders. To try out how far we can automate this approach, I have implemented the concept of AGTP in Python.
dc.description.sponsorshipUtrecht University
dc.format.extent844283
dc.format.extent4418
dc.format.extent271734
dc.format.extent2265
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.format.mimetypetext/x-python
dc.format.mimetypetext/x-tex
dc.language.isoen
dc.titleAutomated Geometry Theorem Proving
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsautomated, geometry, theorem, proving, Python, Sympy
dc.subject.courseuuMathematical Sciences


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record