Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorMitici, M.A.
dc.contributor.authorVakili, Aran
dc.date.accessioned2025-09-04T23:01:53Z
dc.date.available2025-09-04T23:01:53Z
dc.date.issued2025
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/50348
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectThis thesis develops a reinforcement learning framework to coordinate multi-EV charging in community energy systems with solar generation. It integrates vehicle-to-grid, battery degradation, and fairness objectives. Using algorithms like A2C, PPO, and DDQN, it shows that actor–critic methods with curriculum and Bayesian optimization achieve superior coordination, while explainability techniques provide insights into policy decisions.
dc.titleReinforcement Learning for Multi-EV Charging: A Multi-Objective Approach to Renewable Integration and Vehicle-to-Grid
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.courseuuComputing Science
dc.thesis.id53681


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record