From Profiles to Pathways: Revealing E-Bike Mobility and Their Environmental Context Using Latent Cluster Class Analysis and Streetscape Semantic Segmentation
dc.rights.license | CC-BY-NC-ND | |
dc.contributor.advisor | Ettema, Dick | |
dc.contributor.author | Lee, Wenhsin Edith | |
dc.date.accessioned | 2025-09-04T23:01:25Z | |
dc.date.available | 2025-09-04T23:01:25Z | |
dc.date.issued | 2025 | |
dc.identifier.uri | https://studenttheses.uu.nl/handle/20.500.12932/50343 | |
dc.description.sponsorship | Utrecht University | |
dc.language.iso | EN | |
dc.subject | Profiling Accessibility: Exploring Sustainable Non-Car Travel Behavior in the Netherlands | |
dc.title | From Profiles to Pathways: Revealing E-Bike Mobility and Their Environmental Context Using Latent Cluster Class Analysis and Streetscape Semantic Segmentation | |
dc.type.content | Master Thesis | |
dc.rights.accessrights | Open Access | |
dc.subject.courseuu | Applied Data Science | |
dc.thesis.id | 53667 |