Variational inference scheme for gravitational waves parameter estimation.
| dc.rights.license | CC-BY-NC-ND | |
| dc.contributor.advisor | Broeck, C.F.F. Van den | |
| dc.contributor.author | Bevza, Oleksii | |
| dc.date.accessioned | 2025-08-28T00:01:17Z | |
| dc.date.available | 2025-08-28T00:01:17Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | https://studenttheses.uu.nl/handle/20.500.12932/50019 | |
| dc.description.sponsorship | Utrecht University | |
| dc.language.iso | EN | |
| dc.subject | Approximating complex probability densities via optimization using flow-based variational inference could potentially provide a solution to current computational challenges in various domains. This research project presents a thorough literature review on the conceptual fundamentals of variational inference, including its enhancements and limitations in high-dimensional spaces. A VI sampler using a BNAF is being applied to a toy problem to test the potential apapplicability of this technique. | |
| dc.title | Variational inference scheme for gravitational waves parameter estimation. | |
| dc.type.content | Master Thesis | |
| dc.rights.accessrights | Open Access | |
| dc.subject.courseuu | Applied Data Science | |
| dc.thesis.id | 52778 |
