Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorBroeck, C.F.F. Van den
dc.contributor.authorBevza, Oleksii
dc.date.accessioned2025-08-28T00:01:17Z
dc.date.available2025-08-28T00:01:17Z
dc.date.issued2025
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/50019
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectApproximating complex probability densities via optimization using flow-based variational inference could potentially provide a solution to current computational challenges in various domains. This research project presents a thorough literature review on the conceptual fundamentals of variational inference, including its enhancements and limitations in high-dimensional spaces. A VI sampler using a BNAF is being applied to a toy problem to test the potential apapplicability of this technique.
dc.titleVariational inference scheme for gravitational waves parameter estimation.
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.courseuuApplied Data Science
dc.thesis.id52778


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record