Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorCavalcanti, G.R.
dc.contributor.authorStraat, Jesse
dc.date.accessioned2025-08-21T01:02:06Z
dc.date.available2025-08-21T01:02:06Z
dc.date.issued2025
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/49915
dc.description.abstractGromov–Witten invariants count the number of holomorphic maps into some pro-jective variety. We introduce moduli stacks and follow Kontsevich’s construction of Gromov–Witten invariants by doing a Deligne–Mumford compactification on the relevant moduli space. We then define quantum cohomology and show how it gives the Witten–Dijkgraaf–Verlinde–Verlinde equations, and review contemporary research on finding Gromov–Witten invariants on products and blowups. In the second half, we consider the Landau–Ginzburg model, which, when twisted and promoted to a string theory, has correlators which correspond to Gromov–Witten invariants. Finally, we discuss mirror symmetry, a physical tool that can be used to compute Gromov–Witten invariants.
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectGromov–Witten Invariants, Topological Strings, Mirror Symmetry
dc.titleGromov–Witten Invariants, Topological Strings and Mirror Symmetry
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsGromov–Witten;Topological Strings;Mirror Symmetry;String;Geometry;Physics;Quantum Cohomology
dc.subject.courseuuMathematical Sciences
dc.thesis.id51928


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record