Gravitational Wave Data Analysis: Improving the Normalizing Flow Architecture in flowMC for Efficient Bayesian Inference in Parameter Estimation
dc.rights.license | CC-BY-NC-ND | |
dc.contributor.advisor | Broeck, C.F.F. Van den | |
dc.contributor.author | Guo, Hong | |
dc.date.accessioned | 2025-08-21T00:00:57Z | |
dc.date.available | 2025-08-21T00:00:57Z | |
dc.date.issued | 2025 | |
dc.identifier.uri | https://studenttheses.uu.nl/handle/20.500.12932/49808 | |
dc.description.sponsorship | Utrecht University | |
dc.language.iso | EN | |
dc.subject | Gravitational Wave Data Analysis: Improving the Normalizing Flow Architecture in flowMC for Efficient Bayesian Inference in Parameter Estimation | |
dc.title | Gravitational Wave Data Analysis: Improving the Normalizing Flow Architecture in flowMC for Efficient Bayesian Inference in Parameter Estimation | |
dc.type.content | Master Thesis | |
dc.rights.accessrights | Open Access | |
dc.subject.keywords | gravitational wave; gravity; machine learning; Bayesian inference; MCMC; normalizing flow; flow-based model; flowMC; flowJAX; generative model; parameter estimation | |
dc.subject.courseuu | Applied Data Science | |
dc.thesis.id | 52116 |