dc.rights.license | CC-BY-NC-ND | |
dc.contributor.advisor | Zegeling, Paul | |
dc.contributor.author | Schouten, Kelvin | |
dc.date.accessioned | 2025-08-12T14:00:59Z | |
dc.date.available | 2025-08-12T14:00:59Z | |
dc.date.issued | 2025 | |
dc.identifier.uri | https://studenttheses.uu.nl/handle/20.500.12932/49689 | |
dc.description.abstract | This thesis explores the fractional harmonic oscillator by extending classical models with fractional derivatives. Analytical and numerical methods, such as Laplace transforms and L1/L2 schemes, are used to study memory and damping effects. The results reveal non-local behavior in oscillations and suggest extensions to nonlinear systems like the Van der Pol and Lotka–Volterra models. | |
dc.description.sponsorship | Utrecht University | |
dc.language.iso | EN | |
dc.subject | Dit verslag onderzoekt de fractional harmonic oscillator door klassieke modellen uit te breiden met fractionele afgeleiden. Analytische en numerieke methoden worden toegepast, waaronder Laplace-transformatie en L1/L2-schema’s. De studie onthult geheugen- en dempingseffecten in oscillaties en suggereert uitbreidingen naar systemen zoals Van der Pol en Lotka–Volterra. | |
dc.title | The Fractional Harmonic Oscillator: Analysis and Computation | |
dc.type.content | Bachelor Thesis | |
dc.rights.accessrights | Open Access | |
dc.subject.keywords | Fractional calculus
Caputo derivative
Mittag-Leffler function
Harmonic oscillator
Memory effects | |
dc.subject.courseuu | Wiskunde | |
dc.thesis.id | 51428 | |