Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorZegeling, Paul
dc.contributor.authorSchouten, Kelvin
dc.date.accessioned2025-08-12T14:00:59Z
dc.date.available2025-08-12T14:00:59Z
dc.date.issued2025
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/49689
dc.description.abstractThis thesis explores the fractional harmonic oscillator by extending classical models with fractional derivatives. Analytical and numerical methods, such as Laplace transforms and L1/L2 schemes, are used to study memory and damping effects. The results reveal non-local behavior in oscillations and suggest extensions to nonlinear systems like the Van der Pol and Lotka–Volterra models.
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectDit verslag onderzoekt de fractional harmonic oscillator door klassieke modellen uit te breiden met fractionele afgeleiden. Analytische en numerieke methoden worden toegepast, waaronder Laplace-transformatie en L1/L2-schema’s. De studie onthult geheugen- en dempingseffecten in oscillaties en suggereert uitbreidingen naar systemen zoals Van der Pol en Lotka–Volterra.
dc.titleThe Fractional Harmonic Oscillator: Analysis and Computation
dc.type.contentBachelor Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsFractional calculus Caputo derivative Mittag-Leffler function Harmonic oscillator Memory effects
dc.subject.courseuuWiskunde
dc.thesis.id51428


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record