Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorCavalcanti, G.R.
dc.contributor.authorKalmijn, Cisca
dc.date.accessioned2025-07-22T00:02:08Z
dc.date.available2025-07-22T00:02:08Z
dc.date.issued2025
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/49333
dc.description.abstractIn this thesis we consider Gromov–Witten invariants and quantum cohomology, starting with the approach from symplectic geometry. We study pseudoholomorphic curves and their moduli spaces, whose compactifications incorporate the behaviour of bubbling. To define Gromov–Witten invariants we study pseudocycles and semipositivity. After seeing applications in symplectic geometry, we combine the Gromov–Witten invariants into the quantum cohomology ring. For tools to compute the Gromov–Witten invariants explicitly, we shift our focus to the physical approach. We study topological field theories as the correlators in A-twisted nonlinear sigma models correspond to Gromov–Witten invariants. Then we use nonlinear and gauged sigma models to compute the quantum cohomology of toric varieties, using the scale invariance of the correlation functions. By restricting to hypersurfaces in toric varieties, we formulate an explicit mirror map.
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectA symplectic approach to Gromov-Witten invariants and applications to supersymmetric field theories.
dc.titleGromov–Witten Invariants and Quantum Cohomology: Using Symplectic and 2d Topological Field Theoretic Methods
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.courseuuMathematical Sciences
dc.thesis.id48934


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record