Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorBisseling, Rob
dc.contributor.authorNoordam, Pieter
dc.date.accessioned2025-04-03T14:00:59Z
dc.date.available2025-04-03T14:00:59Z
dc.date.issued2025
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/48775
dc.description.abstractIn parallel Sparse Matrix-Vector Multiplication (SpMV), finding an efficient matrix partitioning is crucial to minimize communication cost. This thesis explores the use of Simulated Annealing to find optimal matrix bipartitions. The method uses row/column-based moves to explore the possible partitioning solutions. Our findings indicate that the introduced method is promising for bipartitioning large sparse matrices, especially when exact algorithms prove to be computationally expensive.
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectIn parallel Sparse Matrix-Vector Multiplication (SpMV), finding an efficient matrix partitioning is crucialto minimize communication cost. This thesis explores the use of Simulated Annealing to find optimalmatrix bipartitions. The method uses row/column-based moves to explore the possible partitioningsolutions.
dc.titleOptimal matrix distribution by simulated annealing for a parallel sparse matrix-vector multiplication
dc.type.contentBachelor Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsparallel;SpMV;partitioning;partition;bipartitioning;bipartition;Simulated;Annealing;cost;communication;optimal;matrix;matrices;algorithm;minimize
dc.subject.courseuuWiskunde & Toepassingen
dc.thesis.id19024


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record