Scaling of attractor dimension in the discretized Kuramoto-Sivashinsky equation
dc.rights.license | CC-BY-NC-ND | |
dc.contributor.advisor | Frank, Jason | |
dc.contributor.author | Zasadny, Sebastian | |
dc.date.accessioned | 2025-04-03T12:00:55Z | |
dc.date.available | 2025-04-03T12:00:55Z | |
dc.date.issued | 2025 | |
dc.identifier.uri | https://studenttheses.uu.nl/handle/20.500.12932/48768 | |
dc.description.sponsorship | Utrecht University | |
dc.language.iso | EN | |
dc.subject | In this thesis we take a look at how we can numerically approximate the solution and the Lyapunov exponents of the Kuramoto-Sivashinsky equation using the Implicit-Explicit Runge-Kutta method and then we use these values to calculate the attractor dimension in different numerical experiments. | |
dc.title | Scaling of attractor dimension in the discretized Kuramoto-Sivashinsky equation | |
dc.type.content | Bachelor Thesis | |
dc.rights.accessrights | Open Access | |
dc.subject.courseuu | Mathematics | |
dc.thesis.id | 14749 |