Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorPieropan, M.
dc.contributor.authorKraats, Luke van de
dc.date.accessioned2025-01-14T00:01:08Z
dc.date.available2025-01-14T00:01:08Z
dc.date.issued2025
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/48365
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectFor the ring of polynomials over a finite field, we can define a zeta function which we can use to solve counting problems over global function fields. One may define a height function on global function fields, which gives a means of measuring the ''size' of a point. Using standard applications of Tauberian theorems we will show that the size of the set of points of bounded height is finite, and in particular how it behaves asymptotically.
dc.titleCounting points of bounded height over global function fields
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.courseuuMathematical Sciences
dc.thesis.id42137


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record