Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorSiebes, Arno
dc.contributor.authorTran, Zang
dc.date.accessioned2024-10-18T00:02:24Z
dc.date.available2024-10-18T00:02:24Z
dc.date.issued2024
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/47988
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectThis study focuses on monitoring vital signs in pediatric intensive care using data science techniques. By applying Mini Batch K-means clustering and Random Forest validation to multivariate time series data, we identified significant health events in cardiac infants. The “Difference Baseline Cubed (10m - 5m)” method achieved an accuracy of 0.966. These findings highlight the potential of clustering techniques to improve patient care and enable real-time event detection in critical care settings
dc.titleMedical Intervention Recognition in the PICU
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.courseuuApplied Data Science
dc.thesis.id40345


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record