The Impact of Audio Features on Music Genre Classification and Recommendations
| dc.rights.license | CC-BY-NC-ND | |
| dc.contributor.advisor | Gauthier, David | |
| dc.contributor.author | Sijbesma, David | |
| dc.date.accessioned | 2024-10-16T23:04:42Z | |
| dc.date.available | 2024-10-16T23:04:42Z | |
| dc.date.issued | 2024 | |
| dc.identifier.uri | https://studenttheses.uu.nl/handle/20.500.12932/47974 | |
| dc.description.sponsorship | Utrecht University | |
| dc.language.iso | EN | |
| dc.subject | The Impact of Audio Features on Music Genre Classification and Recommendations | |
| dc.title | The Impact of Audio Features on Music Genre Classification and Recommendations | |
| dc.type.content | Master Thesis | |
| dc.rights.accessrights | Open Access | |
| dc.subject.keywords | Music Genre Classification, Audio Features, Music Recommendation, Machine Learning, Mel-Frequency Cepstral Coefficients (MFCCs), Ensemble Learning, Content-Based Recommendation System, Cosine Similarity | |
| dc.subject.courseuu | Applied Data Science | |
| dc.thesis.id | 40298 | 
