Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorSiebes, Arno
dc.contributor.authorLuo, Kevin
dc.date.accessioned2024-08-07T23:05:38Z
dc.date.available2024-08-07T23:05:38Z
dc.date.issued2024
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/47134
dc.description.abstractThis thesis was done for the company Weather Impact to assess the potential of blending of KNMI harmonie data and DGMR. Linear blending was selected and tested on data from various days. For linear blending, the python package Pysteps was used. The results of linear blending showed some improvements for low intensity precipitation but struggled with high intensity precipitation.
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectE32 Verlengen van AI-neerslagnowcasting door blending met weermodellen
dc.titleE32 Verlengen van AI-neerslagnowcasting door blending met weermodellen
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsWeather forecasting, nowcasting, blending, Numerical weather prediction
dc.subject.courseuuApplied Data Science
dc.thesis.id36221


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record