dc.rights.license | CC-BY-NC-ND | |
dc.contributor.advisor | Siebes, Arno | |
dc.contributor.author | Luo, Kevin | |
dc.date.accessioned | 2024-08-07T23:05:38Z | |
dc.date.available | 2024-08-07T23:05:38Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | https://studenttheses.uu.nl/handle/20.500.12932/47134 | |
dc.description.abstract | This thesis was done for the company Weather Impact to assess the potential of blending of KNMI harmonie data and DGMR. Linear blending was selected and tested on data from various days. For linear blending, the python package Pysteps was used. The results of linear blending showed some improvements for low intensity precipitation but struggled with high intensity precipitation. | |
dc.description.sponsorship | Utrecht University | |
dc.language.iso | EN | |
dc.subject | E32 Verlengen van AI-neerslagnowcasting door blending met weermodellen | |
dc.title | E32 Verlengen van AI-neerslagnowcasting door blending met weermodellen | |
dc.type.content | Master Thesis | |
dc.rights.accessrights | Open Access | |
dc.subject.keywords | Weather forecasting, nowcasting, blending, Numerical weather prediction | |
dc.subject.courseuu | Applied Data Science | |
dc.thesis.id | 36221 | |