Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorFrank, Jason
dc.contributor.authorVonderen, Loek van
dc.date.accessioned2024-08-06T15:02:08Z
dc.date.available2024-08-06T15:02:08Z
dc.date.issued2024
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/47112
dc.description.abstractThe optimal transport distance provides us with a method of assigning a distance between two probability vectors. One downside of this metric is that it can be computationally expensive to compute. One method of estimating the optimal transport distance is by using an entropic regularization, which allows for the use of Sinkhorn’s theorem, providing a lower computational load. In this thesis we investigate the convergence of this method and utilise it to study the change of the attractor of the H´enon system. Our results show that the speed of convergence heavily depends on the level of desired accuracy, which is encapsulated by the regularization parameter λ. The results on the attractor show that it is important to use a large sample size of data points to be able to draw a solid conclusion.
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectWe bestuderen de achtergrond van optimal transport, bekijken sinkhorns algoritme en hoe deze op optimal transport kan worden toegepast. Vrevolgens analyseren we de convergentie van dit algoritme op hénon systemen.
dc.titleSinkhorn’s algorithm for optimaltransport
dc.type.contentBachelor Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsOptimal transport; Sinkhorn’s theorem; Numerical methods; Hénon systems
dc.subject.courseuuWiskunde
dc.thesis.id36119


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record