Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorAbeln, Sanne
dc.contributor.authorFrinking, Stan
dc.date.accessioned2024-08-05T23:02:08Z
dc.date.available2024-08-05T23:02:08Z
dc.date.issued2024
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/47098
dc.description.abstractThis thesis describes how the inclusion of automatically extracted ICF functioning levels from in-patient clinical notes as features for post-discharge rehabilitation prediction can improve its performance.
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectPredicting rehabilitation curves with NLP-based extracted ICF functioning levels from clinical patient notes.
dc.titlePredicting rehabilitation curves with NLP-based extracted ICF functioning levels from clinical patient notes.
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsNLP, rehabilitation, prediction, healthcare, ICF
dc.subject.courseuuArtificial Intelligence
dc.thesis.id35956


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record