Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorLuijken, Kim
dc.contributor.authorCoşkun, Valat
dc.date.accessioned2024-01-01T01:04:16Z
dc.date.available2024-01-01T01:04:16Z
dc.date.issued2024
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/45773
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectThe current study aims to investigate the impact of violations to the assumption of proportional odds in imputation models for missing data in ordinal variables. We performed a proof-of-concept Monte Carlo simulation study focusing on the methods used for the imputation of ordinal categorical variables and compared the bias in a substantive analysis between the different imputation methods.
dc.titleIMPUTING MISSING DATA IN ORDINAL VARIABLES: A COMPARISON OF METHODS UNDER DIFFERENT PROPORTIONAL ODDS ASSUMPTIONS
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.courseuuEpidemiology
dc.thesis.id26122


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record