Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorBootsma, Martin
dc.contributor.authorNieuwenhuizen, Jaap
dc.date.accessioned2023-10-31T00:00:51Z
dc.date.available2023-10-31T00:00:51Z
dc.date.issued2023
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/45451
dc.description.abstractUsing several mathematical models for multi-strain epidemics, we study both theoretically and with stochastic simulations, how waning of overall immunity and cross-immunity impact the coexistence of multiple pathogen strains. The focus lies on one specific multi-strain model with individual-based continuous waning (cross-)immunity. For that model, we observe and study three immunity regimes: (1) short-term immunity, (2) long-term immunity and short-term cross immunity, and (3) long-term immunity and long-term cross-immunity, which differ in the observed number of coexisting strains. Equilibria densities are derived using a compartmentalised model. The short-term immunity coexistence regime is also studied through compartmental models, with analysis being conducted to: (i) influence of cross-immunity on strain density, and (ii) the densities of total infecteds and susceptibles, in addition to the chance of invasion of a new strain into an existing equilibrium. For the long-term immunity non-coexistence parameter regime, we obtain explicit approximations for the expected time between outbreaks.
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectDeze scriptie valt onder de categorie mathematische epidemiologie en modellering. Alhoewel meerdere modellen beschreven en gebruikt worden, ligt de focus op een (met Python gesimuleerd) stochastisch model waarbij meerdere stammen ('strains') geïntroduceerd worden in het systeem, en alle gesimuleerde individuen (kruis-)immuniteit hebben tegen alle stammen. Deze immuniteit daalt over tijd.
dc.titleMathematical models for the spread of multiple pathogens with cross-reactivity and waning of immunity
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsEpidemiology, simulation, modelling, stochastic
dc.subject.courseuuMathematical Sciences
dc.thesis.id25426


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record