Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorGiachanou, Anastasia
dc.contributor.authorChen, Yucheng
dc.date.accessioned2023-07-25T00:01:59Z
dc.date.available2023-07-25T00:01:59Z
dc.date.issued2023
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/44303
dc.description.abstractThis study investigates the performance of two deep learning models, RoBERTa and Bi-LSTM, in predicting the Big Five personality traits and capturing the correlations among personality traits from text data. The models’ performance was evaluated on two datasets, PAN 2015 and PANDORA, using RMSE and R² values. The study found that RoBERTa outperformed Bi-LSTM in predicting personality traits on both datasets. However, both models demonstrated varying performances across the two datasets, highlighting the influence of data diversity on model performance. The study also examined the correlations among predicted personality traits and found that the models could capture the sign of the correlations present in the original datasets. However, divergences in the direction of correlations were observed in instances of weak correlations. Besides, the correlations of original datasets and predictions may not align with the findings in psychological studies, which address the importance of annotations when researching the correlations of predicted personality traits.
dc.description.sponsorshipUtrecht University
dc.language.isoEN
dc.subjectExploring the Intercorrelations of Big Five Personality Traits: Comparing Questionnaire-Based Methods and Automated Personality Assessment using BERT and RNN Models
dc.titleExploring the Intercorrelations of Big Five Personality Traits: Comparing Questionnaire-Based Methods and Automated Personality Assessment using BERT and RNN Models
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsText-based personality computing; RoBERTa; Bi-LSTM; Big Five personality traits; Personality traits' correlations
dc.subject.courseuuApplied Data Science
dc.thesis.id20034


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record