Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorvan Deemter, K.
dc.contributor.advisorChen, G.
dc.contributor.advisorFeelders, A.
dc.contributor.authorLipping, J.
dc.date.accessioned2021-08-26T18:00:19Z
dc.date.available2021-08-26T18:00:19Z
dc.date.issued2021
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/41252
dc.description.abstractEvaluation of quantities in visual data remains one of the biggest challenges in the area of Visual Inference. We explore a novel approach to reasoning about quantities in visual contexts using the tools of Natural Language Inference, working with textual descriptions of visual scenes. Based on a complete description of a simple geometrical scene, we try to predict if a quantified statement about objects in this scene follows from the description. We test an LSTM-based neural network architecture on this task and examine the generalization ability of the model.
dc.description.sponsorshipUtrecht University
dc.format.extent881521
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleUsing Natural Language Inference to Perform Visual Inference: the Case of Quantified Noun Phrases
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.courseuuComputing Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record