Machine learning to diagnose and prognose schizophrenia: using three different approaches to examine the models’ misclassifications
dc.rights.license | CC-BY-NC-ND | |
dc.contributor.advisor | Schnack, H.G. | |
dc.contributor.author | Hemker, M.M. | |
dc.date.accessioned | 2020-08-21T18:00:13Z | |
dc.date.available | 2020-08-21T18:00:13Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://studenttheses.uu.nl/handle/20.500.12932/36938 | |
dc.description.sponsorship | Utrecht University | |
dc.format.extent | 4437485 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.title | Machine learning to diagnose and prognose schizophrenia: using three different approaches to examine the models’ misclassifications | |
dc.type.content | Bachelor Thesis | |
dc.rights.accessrights | Open Access | |
dc.subject.courseuu | Kunstmatige Intelligentie |