Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorOosten, J. van
dc.contributor.advisorBerg, B. van den
dc.contributor.authorZou, T.
dc.date.accessioned2018-10-03T17:01:55Z
dc.date.available2018-10-03T17:01:55Z
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/34355
dc.description.abstractThis thesis is mainly about classical realizability. We study a general construction of abstract Krivine structures from filtered order-partial combinatory algebras. This construction gives interesting models of classical realizability, in the sense that the corresponding Krivine toposes are not Grothendieck. From this construction, we also get a characterization of Krivine toposes among the class of realizability-related toposes. In addition, we generalize some important results about order-partial combinatory algebras to those of filtered order-partial combinatory algebras.
dc.description.sponsorshipUtrecht University
dc.format.extent883979
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleFiltered Order-partial Combinatory Algebras and Classical Realizability
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsclassical realizability, tripos, topos, partial combinatory algebras
dc.subject.courseuuMathematical Sciences


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record