Improving cryo-ET reconstructions of ER-associated ribosomes with tomographic reconstruction methods and deep learning
dc.rights.license | CC-BY-NC-ND | |
dc.contributor.advisor | van Leeuwen, Dr. T | |
dc.contributor.author | Schoonhoven, R.A. | |
dc.date.accessioned | 2019-08-22T17:00:36Z | |
dc.date.available | 2019-08-22T17:00:36Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://studenttheses.uu.nl/handle/20.500.12932/33553 | |
dc.description.sponsorship | Utrecht University | |
dc.format.extent | 32553018 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.title | Improving cryo-ET reconstructions of ER-associated ribosomes with tomographic reconstruction methods and deep learning | |
dc.type.content | Master Thesis | |
dc.rights.accessrights | Open Access | |
dc.subject.keywords | Tomography, Deep learning, Neural networks, Inverse problems, imaging, CT, computerized tomography, cryo-ET, cryo-EM, reconstruction methods, SIRT, FBP, Total variation, MS-D network | |
dc.subject.courseuu | Mathematical Sciences |