Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorVerduyn Lunel, S.M.
dc.contributor.authorWolff, B.A.J. de
dc.date.accessioned2018-07-20T17:02:20Z
dc.date.available2018-07-20T17:02:20Z
dc.date.issued2018
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/29742
dc.description.abstractIn this thesis, we study three different approximation methods. First, we study the pseudospectral approximation method, where we approximate eigenvalues of delay equations. Moreover, we look at the parametrisation method, which we can use to approximate invariant manifolds of both finite and infinite dimensional dynamical systems. Lastly, we study Trotter-Kato approximation methods, where we approximate flows and orbits of delay equations.
dc.description.sponsorshipUtrecht University
dc.format.extent926922
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleFinite dimensional approximations of dynamical systems generated by delay equations
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsDelay Differential Equations; Pseudospectral method; Parametrisation method; Trotter-Kato Theorem
dc.subject.courseuuMathematical Sciences


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record