dc.rights.license | CC-BY-NC-ND | |
dc.contributor.advisor | Leeuwen, T. van | |
dc.contributor.author | Graas, A.B.M. | |
dc.date.accessioned | 2018-03-22T18:00:51Z | |
dc.date.available | 2018-03-22T18:00:51Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | https://studenttheses.uu.nl/handle/20.500.12932/28853 | |
dc.description.abstract | Randomized techniques have gained a tremendous increase in popularity with the ever-growing abundance of observational data, such as is the case in seismic inversion. In this research, the high-dimensional prior covariance matrix of Bayesian problems is estimated using a randomized singular-value decomposition. Furthermore, randomized trace estimation and stochastic batching methods are outlined against a new RSVD-inspired source-encoding algorithm in full waveform inversion. | |
dc.description.sponsorship | Utrecht University | |
dc.format.extent | 2421509 | |
dc.format.extent | 1547739 | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.title | Dimensionality reduction and uncertainty quantification in seismic waveform inversion | |
dc.type.content | Master Thesis | |
dc.rights.accessrights | Open Access | |
dc.subject.keywords | Seismic inversion;Full waveform inversion;Bayesian inversion;source-encoding;dimensionality reduction;stochastic methods;batching;randomized SVD;singular-value decomposition | |
dc.subject.courseuu | Mathematical Sciences | |