Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorLeeuwen, T. van
dc.contributor.authorGraas, A.B.M.
dc.date.accessioned2018-03-22T18:00:51Z
dc.date.available2018-03-22T18:00:51Z
dc.date.issued2018
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/28853
dc.description.abstractRandomized techniques have gained a tremendous increase in popularity with the ever-growing abundance of observational data, such as is the case in seismic inversion. In this research, the high-dimensional prior covariance matrix of Bayesian problems is estimated using a randomized singular-value decomposition. Furthermore, randomized trace estimation and stochastic batching methods are outlined against a new RSVD-inspired source-encoding algorithm in full waveform inversion.
dc.description.sponsorshipUtrecht University
dc.format.extent2421509
dc.format.extent1547739
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleDimensionality reduction and uncertainty quantification in seismic waveform inversion
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsSeismic inversion;Full waveform inversion;Bayesian inversion;source-encoding;dimensionality reduction;stochastic methods;batching;randomized SVD;singular-value decomposition
dc.subject.courseuuMathematical Sciences


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record