Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorBodlaender, Hans. L.
dc.contributor.authorRoden, N. van
dc.date.accessioned2015-10-16T17:00:54Z
dc.date.available2015-10-16T17:00:54Z
dc.date.issued2015
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/28433
dc.description.abstractIn graph theory, the treedepth problem finds depth first search spanning trees of bounded height and is NP-Complete. We study an extension of treedepth where we bound the distance between adjacent vertices in the depth first search spanning tree. This graph problem has a close resemblance to bandwidth and treespan. We call this problem spanheight and show that its NP-Complete. We introduce a single exponential algorithm using O(n^2 9^n) time and O(n^2 2^n) space. We look at meta-theorems for proving membership in FPT, and present an O(n t^4 2^(7t^3 2^t log(t)) ) time and O(n 2^(3t^3 2^t log(t))) space FPT algorithm by parameterizing with treedepth.
dc.description.sponsorshipUtrecht University
dc.format.extent759773
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleSpanheight, A Natural Extension of Bandwidth and Treedepth
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsSpanheight, treedepth, treespan, Depth First Search Spanning Trees, bandwidth, Fixed Parameter Tractability
dc.subject.courseuuComputing Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record