Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorBeukers, F.
dc.contributor.authorNelen, I.F.M.M.
dc.date.accessioned2015-03-02T18:00:27Z
dc.date.available2015-03-02T18:00:27Z
dc.date.issued2015
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/19516
dc.description.abstractIn this thesis an in-depth explanation will be given of the proof Maynard gave in his article. In which the steps of the proofs will be expanded. He used a re?nement on the GPY sieve to study k-tuples and small gaps between primes. This will show that the lim inf (Pn+1 - Pn) < 600, and, by assuming the Elliott-Halberstam conjecture, that lim inf(Pn+1 - Pn) < 12 and lim inf(Pn+2 - Pn) < 600.
dc.description.sponsorshipUtrecht University
dc.format.extent393623
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleTwin Prime Numbers, Bounded Gaps Between Primes
dc.type.contentBachelor Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsNumber Theory, Maynard, Twin-prime conjecture, Primes, Bounded Gaps
dc.subject.courseuuWiskunde


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record