Show simple item record

dc.rights.licenseCC-BY-NC-ND
dc.contributor.advisorWiedijk, F.
dc.contributor.advisorOosten, J. van
dc.contributor.advisorBerg, B. van den
dc.contributor.authorDoorn, F.P. van
dc.date.accessioned2013-08-09T17:01:16Z
dc.date.available2013-08-09
dc.date.available2013-08-09T17:01:16Z
dc.date.issued2013
dc.identifier.urihttps://studenttheses.uu.nl/handle/20.500.12932/13854
dc.description.abstractMost systems in Type Theory follow the Poincaré principle, which means that computations need no proof. This has disadvantages for long and complicated computations. We will introduce a new version of Type Theory where computations also require proof. In this new system the derivation of a judgement will be isomorphic to the term typed in the judgement. In the thesis we have proved that the new version is equivalent to the standard version. Type theory has applications in proof assistants, computer programmes which help checking a proof. To illustrate this use, the complete proof of this equivalence has been formalised in the proof assistant Coq.
dc.description.sponsorshipUtrecht University
dc.format.extent786127 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleExplicit convertibility proofs in Pure Type Systems
dc.type.contentMaster Thesis
dc.rights.accessrightsOpen Access
dc.subject.keywordsType Theory
dc.subject.keywordsPure Type System
dc.subject.keywordsPoincaré principle
dc.subject.keywordsbeta conversion
dc.subject.keywordsbeta reduction
dc.subject.keywordsconversion rule
dc.subject.keywordsproof assistant
dc.subject.keywordsCoq
dc.subject.keywordsexplicit computation
dc.subject.keywordsCalculus of Constructions
dc.subject.courseuuMathematical Sciences


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record